Что такое холостой ход трансформатора
Понятие потерь холостого хода трансформатора и как их определить, формулы и таблицы
В результате энергопотерь происходит перерасход средств и материалов. Из-за этого электричество дорожает. Чтобы справиться с этой проблемой, стараются вовремя выявлять неполадки и предотвращать свои в работе. Негативно на работу устройства влияют потери на холостом ходу трансформатора. Для устранения данной проблемы постоянно разрабатываются новые методики.
Понятие холостого хода трансформатора
Когда у трансформатора наблюдается выделенное питание одной обмотки, а другие пребывают в разомкнутом состоянии. Этот процесс приводит к утечке энергии, что и называют потерями холостого хода. Его развитие происходит под влиянием ряда внешних и внутренних факторов.
Мощность трансформатора не используется в полной мере, а часть энергии утрачается по причине некоторых магнитных процессов, особенностями первичной обмотки и изоляционного слоя. Последний вариант влияет при использовании приборов, функционирующих на повышенной частоте.
Какие факторы влияют на потери
Современные трансформаторы в условиях полной нагрузки достигают 99% КПД. Но устройства продолжают совершенствовать, пытаясь снизить утрату энергии, которая практически равны сумме потерь холостого хода, возникающих под влиянием разнообразных факторов.
Изоляция
Если на стягивающих шпильках установлена плохая изоляция или ее недостаточно, возникает замкнутый накоротко контур. Это один из главных факторов данной проблемы трансформатора. Поэтому процессу изоляции следует уделять больше внимания, используя для этих целей качественные специализированные материалы.
Вихревые токи
Развитие вихревых токов связано с течением магнитного потока по магнитопроводу. Их особенность в перпендикулярном направлении по отношению к потоку. Чтобы их уменьшить, магнитопровод делают из отдельных элементов, предварительно изолированных. От толщины листа и зависит вероятность появления вихревых токов, чем она меньше, тем ниже риск их развития, приводящего к меньшим потерям мощности.
Чтобы уменьшить вихревые токи и увеличить электрическое сопротивление стали, в материал добавляют различные виды присадок.
Они улучшают свойства материала и позволяют снизить риск развития неблагоприятных процессов, плохо отражающихся на работе устройства.
Гистерезис
Как и переменный ток, магнитный поток также меняет свое направление. Это говорит о поочередном намагничивании и перемагничивании стали. Когда ток меняется от максимума до нуля, происходит размагничивание стали и уменьшение магнитной индукции, но с определенным опозданием.
При перемене направления тока кривая намагничивания формирует петлю гистерезиса. Она отличается в разных сортах стали и зависит от того, какие максимальные показатели магнитной индукции материал может выдержать. Петля охватывает мощность, которая постепенно перерасходуется на процесс намагничивания. При этом происходит нагревание стали, энергия, проводимая по трансформатору, превращается в тепловую и рассеивается в окружающую среду, то есть, она тратится зря, не принося никакой пользы всем пользователям.
Характеристики электротехнической стали
Для трансформаторов используют преимущественно холоднокатаную сталь. Но показатель потерь в ней зависит от того, насколько качественно собрали устройство, соблюдались ли все правила в ходе производственного процесса.
Для уменьшения потерь можно также немного добавить сечения проводам на обмотке. Но это не выгодно с финансовой точки зрения, ведь придется использовать больше магнитопровода и других важных материалов. Поэтому размер обмоточных проводов меняют редко. Пытаются найти другой, более экономичный способ решения этой проблемы.
Перегрев
В процессе работы трансформатора его элементы могут нагреваться. В этих условиях устройство не способно нормально выполнять свои функции. Все зависит от скорости этого процесса. Чем выше нагрев, тем быстрее прибор перестанет выполнять свои прямые функции и понадобится капитальный ремонт и замена определенных деталей.
В первичной обмотке
Если электрический ток по проводнику замыкается, то высокая вероятность утечки электрической энергии. Размер потерь зависит от величины тока в проводнике и его сопротивления, а также от показателя нагрузок, возлагаемых на прибор.
Как определить потери
Этот процесс можно измерить, воспользовавшись мощной установкой. Формула включает такие действия: необходимо умножить показатели их мощности друг на друга. При использовании этого способа необходимо учитывать наличие определенных погрешностей. Искажение связано с тем, что коэффициент мощности учесть точно нельзя. Этот показатель называют конус игла. Он достаточно важен для работы устройства.
Таблица потерь силовых трансформаторов по справочным данным в зависимости от номинала
Чаще всего проблема утечки электроэнергии связана с движением вихревых токов и перемагничиванием. Под влиянием этих факторов нагревается магнитопровод, который обуславливает основную часть потерь холостого хода независимо от тока нагрузки. Развитие этого процесса происходит независимо от того, в каком режиме функционирует устройство.
Постепенно, под влиянием определенных факторов могут меняться эти показатели в сторону значительного увеличения.
Мощность кВа | Напряжение ВН/НН, кВ | Потери холостого хода Вт |
250 | 10/0,4 | 730 |
315 | 10/0,4 | 360 |
400 | 10/0,4 | 1000 |
500 | 10/0,4 | 1150 |
630 | 10/0,4 | 1400 |
800 | 10/0,4 | 1800 |
1000 | 10/0,4 | 1950 |
Проверка устройства в режиме ХХ
Для этого выполняют такие действия:
После получения показаний всех приборов выполняют расчеты, которые помогут в вычислении. Чтобы получить нужные данные, необходимо показатели первой обмотки разделить на вторую. С применением данных опыта ХХ с результатами короткозамкнутого режима определяют, насколько полно устройство выполняет свои действия.
Особенности режима ХХ в трехфазном трансформаторе
На функционирование трехфазного трансформатора в таком режиме влияют отличия в подключении обмоток: первичная катушка в виде треугольника и вторичная в форме звезды. Ток способствует созданию собственного потока.
Трехфазный ток в виде группы однофазных имеет такие особенности: замыкание ТГС магнитного потока происходит в каждой фазе за счет сердечника. Если напряжение будет постепенно увеличиваться, то в изоляции возникнет пробой и электроустановка рано или поздно выйдет из строя.
Если в трансформаторе используется бронестержневая магнитная система, то в нем можно наблюдать развитие похожих процессов.
Примеры определения потерь ХХ на реальных моделях
Чтобы определить показатель потерь в течение года на трансформаторе типа ТНД мощностью в 16МВА, необходимо воспользоваться эмпирической формулой:
Вывод
Энергопотери в условиях холостого хода трансформатора связаны с магнитными потерями, потерями в первичной обмотке и изоляционном слое. Для снижения этого показателя до сих пор ведутся работы, несмотря на то, что КПД современных трансформаторов в условиях повышенной нагрузки составляет 99%.
Для снижения показателя утечки энергии необходимо снизить влияние провоцирующих факторов. Чтобы добиться этого, постоянно усовершенствуют технологию создания устройств, используют только прочные материалы, проверяя их экспериментальным путем.
Что такое холостой ход трансформаторов, формулы и схемы
Трансформатор электрического тока является устройством преобразования энергии. Ток холостого хода трансформатора характеризует потери при отсутствии подключенной нагрузки. Величина данного параметра зависит от нескольких факторов:
При изготовлении преобразователей стремятся к максимально возможному снижению потерь холостого хода с целью повышения КПД, снижения нагрева, а также уменьшения паразитного поля магнитного рассеивания.
Общая конструкция и принцип работы трансформатора
Конструктивно трансформатор состоит из следующих основных частей:
Обмотки могут быть намотаны на жестком каркасе или иметь бескаркасное исполнение. В качестве сердечников трансформаторов напряжения промышленной частоты используется специальным образом обработанная сталь. В некоторых случаях встречаются устройства без сердечника, но они используются только в области высокочастотной схемотехники и в рамках данной темы рассматриваться не будут.
Принцип действия рассматриваемой конструкции заключается в следующем:
ЭДС индукции создается, в том числе, в первичной обмотке. Ее направление противоположно подключенному напряжению, поэтому они взаимно компенсируются и ток через обмотку при отсутствии нагрузки равен нулю. Соответственно, потребляемая мощность при отсутствии нагрузки равна нулю.
Понятие холостого хода
Приведенные выше рассуждения справедливы для идеального трансформатора. Реальные конструкции обладают следующими потерями (недостатками) на:
В результате, в реальных конструкциях трансформатора наводимая ЭДС индукции отличается от номинального напряжения первичной обмотки и не в состоянии его полностью скомпенсировать. В обмотке возникает некоторый ток холостого хода. При подключении нагрузки данное значение суммируется с номинальным током и характеризует общие потери в электрической цепи.
Потери снижают общий КПД трансформатора, в результате чего растет потребление мощности.
Меры по снижению тока холостого хода
Основным источником возникновения тока холостого хода является конструкция магнитопровода. В ферромагнитном материале, помещенном в переменное электрическое поле, наводятся вихревые токи электромагнитной индукции – токи Фуко, которые нагревают материал сердечника.
Для снижения вихревых потерь материал сердечника изготавливают из тонких пластин, отделенных друг от друга изолирующим слоем, которую выполняет оксидная пленка на поверхности. Сам материал производится по специальной технологии, с целью улучшения магнитных свойств (увеличения значения магнитного насыщения, магнитной проницаемости, снижения потерь на гистерезис).
Обратная сторона использования большого количества пластин состоит в том, что в местах стыков происходит разрыв магнитного потока, в результате чего возникает поле рассеивания. Поэтому для наборных сердечников важна тщательная подгонка отдельных пластин друг к другу. В ленточных разрезных магнитопроводах отдельные части подгоняются друг к другу при помощи шлифовки, поэтому при сборке конструкции нельзя менять местами части сердечника.
От указанных недостатков свободны О-образные магнитопроводы. Магнитное поле рассеивания у них стремится к нулю.
Поле рассеивания обмотки и междувитковую емкость снижают путем изменения конструкции обмоток и пространственного размещения их частей относительно друг друга.
Снижение потерь также достигается при возможно более полном заполнении свободного окна сердечника. При этом масса и габариты устройства стремятся к оптимальным показателям.
Как проводится опыт холостого хода
Опыт холостого хода подразумевает подачу напряжения на первичную обмотку при отсутствии нагрузки. При помощи подключенных измерительных приборов измеряются электрические параметры конструкции.
Для проведения опыта холостого хода первичную обмотку включают в сеть последовательно с прибором для измерения тока- амперметром. Параллельно зажимам подключается вольтметр.
Следует иметь в виду, что предел измерения вольтметра должен соответствовать подаваемому напряжению, а при выборе амперметра нужно учитывать ориентировочные значения измеряемой величины, которые зависят от мощности трансформатора.
Коэффициент трансформации
Наиболее просто определяется коэффициент трансформации. Для этого сравнивается входное и выходное напряжение. Расчет производится по следующей формуле:
Данное отношение справедливо для всех обмоток трансформатора.
Однофазные трансформаторы
В однофазных трансформаторах показания амперметра характеризуют потребляемый ток при отсутствии нагрузки. Данные показания являются конечными и нет необходимости в дальнейших вычислениях.
Трехфазные
Чтобы проверить трехфазный трансформатор, требуется усложнение схемы подключения. Необходимо наличие следующих приборов:
При проведении опыта холостого хода производятся следующие вычисления:
Коэффициент трансформации вычисляется по полученным значениям напряжения аналогично однофазной системе.
Измерение тока
При измерении тока можно определить только величину электрических потерь. Более полно определить параметры конструкции позволяет более сложная схема измерений.
Применение ваттметра
Подключив в первичную цепь ваттметр, можно определить мощность потерь трансформатора в режиме холостого хода. Суммируясь с мощностью нагрузки, найденная величина определяет габаритную мощность трансформатора.
Измерение потерь
При измерениях тока холостого хода и мощности потребления, можно сделать выводы о общих потерях холостого хода, которые приводят к следующему:
Схема замещения в режиме трансформатора
Прямой электрический расчет трансформатора сложен по той причине, что он представляет собой две электрических цепи, связанных между собой магнитной цепью.
Для упрощения расчетов удобнее пользоваться упрощенной эквивалентной схемой. В схеме замещения вместо обмоток используются комплексные сопротивления:
Каждое комплексное сопротивление состоит из последовательно соединенного активного сопротивления и индуктивности.
Активное сопротивление – это сопротивление проводов обмотки.
От чего зависит магнитный поток взаимоиндукции в режиме ХХ
Магнитный поток взаимоиндукции в трансформаторе зависит от способа размещения обмоток на сердечнике и их конструктивного исполнения.
Важную роль играет коэффициент заполнения окна магнитопровода, который показывает отношение общего пространства, к месту, занятому обмоткой.
Чем ближе данный коэффициент к единице, тем выше будет взаимоиндукция обмоток и меньше потери в трансформаторе.
Примеры расчетов и измерений в режиме ХХ
Измеряя ток, напряжение и мощность трансформатора в опыте холостого хода, можно рассчитать следующие дополнительные данные:
Найти ток холостого хода без применения амперметра можно по показаниям вольтметра и ваттметра:
Режим холостого хода трансформатора: нормальный ток, схемы опыта и таблица потерь
Холостой ход трансформатора — особый режим работы, позволяющий определить некоторые характеристики устройства.
Так проверяют преобразователи не только новые, но и находящиеся в эксплуатации, ведь со временем в них из-за износа магнитопровода возрастает доля потерь.
Далее будут рассмотрены суть режима холостого хода и методика замеров параметров.
Режим холостого хода трансформатора
Холостым ходом (ХХ) называют такое подключение устройства, когда на первичную обмотку подается номинальное переменное напряжение, а цепи всех вторичных – разомкнуты (нагрузки не подключены).
В преобразователе напряжения, деление обмоток (катушек) на первичную и вторичные условно. Любая из них становится первичной, когда на нее поступает исходное переменное напряжение. Прочие, в них наводится ЭДС — становятся, соответственно, вторичными.
Опыт холостого хода проводится по схеме показанной на рисунке
Следовательно, любой трансформатор, соответственно способу подключения, может быть как понижающим, так и повышающим (кроме разделительного — с коэффициентом трансформации, равным единице).
Поскольку цепь вторичной катушки разъединена, тока в ней нет (I2 = 0). В первичной протекает I1, формирующий в магнитопроводе поток вектора магнитной индукции Ф1. Последний меняется по синусоидальному закону, но из-за перемагничивания стали отстает по фазе от I1 на угол B (угол потерь).
Применяют следующую терминологию:
Под действием Ф1 во всех катушках возникает ЭДС:
Зависимость ЭДС от различных параметров определяется формулами:
W1 и W2 — число витков в обмотках;
Ф1max — величина магнитного потока в точке максимума.
Следовательно, числовое значение ЭДС находится в прямой зависимости от числа витков катушки. Из соотношения ЭДС в первичной и вторичной обмотках, определяют главный параметр аппарата— коэффициент трансформации (К): К = Е1 / Е2 = W1 / W2.
Вторичная катушка по сравнению с первичной содержит витков:
Помимо рабочего (основного), в установке образуется магнитный поток рассеяния Фр1. Это силовые линии, ответвляющиеся от рабочего магнитного потока Ф1 в сердечнике и замыкающиеся по воздуху вокруг витков катушек. Как и Ф1, Фр1 является переменным, а значит, он, согласно закону электромагнитной индукции, наводит в первичной обмотке ЭДС самоиндукции Ер1.
Е1 и Ер1 всегда направлены против приложенного к первичной обмотке напряжения U1. По характеру действия на ток, они подобны резистору, потому и обозначаются термином «индуктивное сопротивление» (Х).
Емкостное и индуктивное сопротивление
Следовательно, создавая I1, напряжение U1 преодолевает активное сопротивление R1 первичной катушки и обе ЭДС самоиндукции. Математически это выглядит так: U1 = I1 * R1 + (-Е1) + (-Ер1).
Запись выполнена в векторной форме, поэтому перед обозначениями ЭДС самоиндукции проставлены значки «-»: они говорят о противоположном направлении этих векторов относительно напряжения U1. Ток холостого хода I1 не является строго синусоидальным.
Он искажается, поскольку имеет в своем составе так называемую третью гармоническую составляющую (ТГС), обусловленную вихревыми токами, гистерезисом и магнитным насыщением магнитопровода. Но с определенной долей приближения, годной для практических расчетов, его можно заменить эквивалентным синусоидальным током с равноценным действующим значением.
Таблица потерь
Потребляемая активная мощность — это потери ХХ трансформатора. Часть ее тратится на нагрев провода обмотки (I1 2 * R1). Она незначительна, поскольку сопротивление R1 провода мизерно и ток ХХ также мал — 3-10% от номинального.
Основная доля расходуется на вихревые токи в магнитопроводе и его перемагничивание. Эти явления приводят к нагреву магнитопровода. Ф1, обуславливающий основную часть потерь холостого хода, не зависит от тока нагрузки. Следовательно, потери имеются постоянно и в любом режиме работы устройства, в том числе и в активном (нагрузочном).
Таблица потерь ХХ:
Номинальная мощность, кВА | Номинальное напряжение ВН/НН, кВ | Потери холостого хода, Вт |
250 | 10/0,4 | 730 |
315 | 10/0,4 | 360 |
400 | 10/0,4 | 1000 |
500 | 10/0,4 | 1150 |
630 | 10/0,4 | 1400 |
800 | 10/0,4 | 1800 |
1000 | 10/0,4 | 1950 |
1250 | 10/0,4 | 2300 |
1600 | 10/0,4 | 2750 |
2000 | 10/0,4 | 3200 |
2500 | 10/0,4 | 4200 |
Со временем, потери увеличиваются из-за следующих изменений в магнитопроводе:
Проверка работы
С целью проверки устройства его включают в режиме ХХ и выполняют следующие измерения:
Сняв показания с приборов, производят вычисления:
Используя данные опыта ХХ в сочетании с данными опыта короткозамкнутого режима, определяют КПД устройства.
Холостой ход трехфазного трансформатора
Характер работы 3-фазного устройства в режиме ХХ зависит от магнитной системы и схемы подключения обмоток:
В последней схеме ТГС тока I1 отсутствует, поскольку для нее нет пути: третьи гармонии каждой из фаз в любой момент времени направлены к нулевой точке или от нее. Из-за этого искажается магнитный поток.
Дальнейшее определяется магнитной системой:
Схема опыта холостого хода трехфазного двухобмоточного трансформатора
Присутствие в схеме 3-фазного трансформатора соединения «треугольник» в значительной степени нейтрализует негативное влияние ТГС магнитного потока и улучшает кривую ЭДС.
Видео по теме
О работе трансформатора на холостом ходу в видео:
Режим холостого хода используется для определения параметров как только что изготовленных трансформаторов, так и уже эксплуатируемых. Эти параметры — потери холостого хода, ток холостого хода и пр. — должны лежать в пределах, оговоренных ГОСТами.
Нижний предел в нормативах не обозначен, но нужно понимать, что слишком низкие потери говорят о перерасходе материалов в трансформаторе и, соответственно, о его неоправданно высокой стоимости.
Холостой ход трансформаторов: измерение потерь, параметры, периодичность, схема опыта
Что такое холостой ход (ХХ) трансформатора?
Величина потерь силового трансформатора состоит из так называемых потерь в меди и потерь в стали. Первые связаны с протеканием тока нагрузки через проводники обмоток, имеющие определенное электрическое сопротивление. Потери же в стали обусловлены вихревыми токами, токами намагничивания, возникающими в магнитопроводе.
Поэтому этот опыт позволяет измерить мощность потерь в стали, называемыми потерями холостого хода.
Дополнительно, подключив вольтметр к оставшейся разомкнутой обмотке, можно измерить на ней напряжение, и по показаниям двух вольтметров рассчитать коэффициент трансформации. Но это измерение к самому опыту холостого хода не относится.
Опыт холостого хода при вводе в эксплуатацию подвергаются
В эксплуатации такие измерения проводятся только для трансформаторов с мощностью 1000 кВА и более, и только после капитального ремонта, связанного со сменой обмоток или ремонтом магнитопровода.
По сетевым правилам возможно проведение измерений по распоряжению технического руководителя предприятия после того, как хроматографический анализ газов, растворенных в масле, дал настораживающие результаты. Но это касается только силовых трансформаторов с обмотками на напряжение 110 кВ и выше.
Порядок и схема измерения
Перед проведением опыта проводят процесс размагничивания магнитопровода испытуемого трансформатора. Для этого используется постоянный ток, пропускаемый через одну из обмоток стороны низкого напряжения. Подключение тока производится многократно, каждое последующее подключение происходит с изменением полярности и уменьшением величины.
Начальное значение не должно быть меньше двойного значения ожидаемого тока холостого хода. При каждом последующем включении величина уменьшается на 30-40 %. Процесс заканчивается при токе, меньшим значения тока холостого хода.
Для проведения измерений потребуется три лабораторных прибора, с классом точности не менее 0,5. Это амперметры, вольтметры и ваттметры. амперметры подключаются в каждую фазу последовательно. вольтметры включаются на линейное напряжение всех трех фаз. Токовые обмотки ваттметров подключаются последовательно с амперметрами.
Обмотки напряжения ваттметров подключаются согласно приведенным схемам. Подается напряжение, с приборов снимаются показания.
Строго говоря, измерение производится по тем же схемам, которые использовались на заводе изготовителе для проведения опыта. Ведь полученные данные нужно будет сравнить с заводскими. Но, если источник трехфазного напряжения недоступен, можно выполнить три измерения, подавая напряжение на две фазы обмотки трансформатора, закорачивая третью, остающуюся свободной.
При этом используется только линейное напряжение, так как искажение формы кривой из-за нелинейных нагрузок в сети на него имеет минимальное влияние. По этим же схемам проводится опыт холостого хода при пониженном (малом) напряжении.
Анализ результатов измерения холостого хода
При приемосдаточных испытаниях и капитальном ремонте полученные данные сравниваются с протоколом о соответствующих испытаниях, проведенных на заводе после изготовления трансформатора. Расхождение более 5 % не допускается.
Для однофазных трансформаторов в этих же случаях мощность потерь не должна отличаться от исходной величины более, чем на 10%.
В эксплуатации измеряется только ток холостого хода на основании опыта с номинальным напряжением или мощность потерь при пониженном. ПТЭЭП при этом не нормирует отклонения от нормы.
Однако, при подозрении на повреждение в трансформаторе метод измерения потерь с использованием трех последовательно проведенных опытов дает очень ценный результат. Поскольку обмотки фаз трансформатора находятся в неравных условиях, то можно не только вычислить, есть ли там дефект, но и определить дефектную фазу.
Путь магнитного потока при возбуждении выводов АВ и ВС одинаков. Поэтому и мощности потерь для опытов на этих фазах не будут отличаться. При возбуждении фаз АС путь, пройденный магнитным потоком, длиннее, поэтому мощность потерь будет на 25-50% превышать предыдущие. Сравнивая эти показатели, можно выявить, на какой фазе есть дефект.