Что такое функциональные возможности организма
Что такое функциональные возможности организма
За последние годы большое внимание уделяется изучению физического развития, уровня физической подготовленности и сравнительному анализу функционального состояния сердечно-сосудистой системы студентов с разной степенью тренированности [1; 2].
Если говорить о физическом развитии, то его можно рассматривать и как процесс изменения морфологических и функциональных свойств организма, который происходит с ростом и развитием, и как уровень физических качеств [6]. Одним из основных физических качеств является выносливость. Известно, что для развития выносливости имеют существенное значение физические упражнения, выполняемые в циклическом режиме при хорошем обеспечении организма кислородом. К таким упражнениям можно отнести бег на дистанции от 1500 м, лыжные гонки, катание на велосипеде, ходьба, плавание и другие упражнения подобного характера. Еще немаловажными условиями для развития выносливости являются систематичность и последовательность.
Исследования показывают, что хорошим средством развития выносливости являются ходьба, медленный бег, ходьба на лыжах. В целом выносливость к 17-19 годам составляет 85% уровня взрослого человека, максимальных значений она достигает к 25-30 годам [7].
Выносливость в значительной степени зависит от работоспособности внутренних органов, особенно от сердечно-сосудистой и дыхательной систем. Она изменяется в зависимости от характера работы и ее интенсивности. Чем больше интенсивность работы, тем меньше ее продолжительность, т.к. с возрастанием интенсивности работы выносливость уменьшается.
Одним из требований при выполнении упражнений циклического характера является то, что интервал значений частоты сердечных сокращений (ЧСС) должен находиться в пределах 120-180 уд/мин. Интенсивность нагрузки при выполнении упражнений подобного характера должна повышаться постепенно со 110 уд/мин, сначала до оптимальных значений (130-160 уд/мин), и только потом достигать уровня максимальных значений от 170 до 180 уд/мин. Подобная постепенность выполнения нагрузки позволяет адаптироваться системам организма, которые отвечают за развитие выносливости. Это, в первую очередь, сердечно-сосудистая, дыхательная и нервная системы, а также обмен веществ [7; 8].
Целью нашего исследования явилось изучение функциональных возможностей сердечно-сосудистой системы студентов в связи с занятиями физическими нагрузками, направленными на развитие выносливости.
Общеизвестно, что в качестве одного из основных параметров для оценки физического развития человека берут длину тела. Этот параметр является наиболее устойчивым к воздействиям факторов окружающей среды, и его изменения свидетельствуют о благополучии или неблагополучии в состоянии организма. При анализе физического развития длина тела имеет важное значение для правильной оценки таких показателей, как масса тела и окружность грудной клетки, также параметры длины тела используют для расчета такого важного коэффициента, как индекс массы тела.
В наших исследованиях были выявлены достоверные отличия в значениях длины тела как в группе девушек, так и в группе юношей. Так, длина тела у девушек, занимающихся легкой атлетикой, составила 169,6±1,63 см, что достоверно больше длины тела девушек, не занимающихся спортом (р DDD
Научная электронная библиотека
Сетко Н. П., Сетко А. Г., Булычева Е В., Бейлина Е Б., Сетко И. М.,
2.4. Оценка функциональных резервов и биологической адаптации
В настоящее время является общепризнанным фактом, что функциональное тестирование является обязательной частью методологии оценки здоровья и мониторинга его состояния (Баранов А.А., 2000). Наиболее простыми и удобными для употребления в практике показателями функционального состояния организма являются вегетативные реакции, которые непосредственно включены в адаптационно-трофическую функцию организма и хорошо отражают трудности, с которыми сталкивается ребенок или подросток в процессе жизнедеятельности. Определение вариабельности сердечного ритма (выраженность колебаний частоты сердечных сокращений по отношению к его среднему уровню) признано наиболее информативным неинвазивным методом оценки состояния вегетативной регуляции сердечно-сосудистой системы. Показатели деятельности системы кровообращения – индикатор деятельности всего организма (Баевский Р.М., 1979). Поэтому регистрация и автоматический анализ кардиоритмограмм в покое и при нагрузочных пробах – основная часть функционального мониторинга здоровья на любом этапе индивидуального развития. Примерами автоматической регистрации сердечного ритма и компьютерной обработки полученных результатов являются аппартано-программные комплексы «ORTO Expert» (Игишева Л.Н., Галеев А.Р., 2003), комплекс для обработки кардиоинтервалограмм и анализа вариабельности сердечного ритма «ВариКАРД».
В основе методов диагностики функционального состояния организма лежит представление о том, что сердечно-сосудистая система с ее многоуровневой регуляцией, конечным результатом деятельности которой является обеспечение заданного уровня функционирования целостного организма. Обладая сложными нервно-рефлекторными и нейрогуморальными механизмами, система кровообращения обеспечивает своевременное адекватное кровоснабжение соответствующих структур. При прочих равных условиях можно считать, что любому заданному уровню функционирования целостного организма соответствует эквивалентный уровень функционирования аппарата кровоснабжения (В.В. Парин, 1967). Такая тесная зависимость объясняется с позиций трехуровневой модели управления в организме, предложенной С.Н. Брайнесом и В.Б. Свечинским (1974). Сердечный ритм и процесс управления им вегетативной нервной и гуморальной системами являются важным звеном в адаптации организма к условиям внешней и внутренней среды, что дает возможность использовать характеристики сердечного ритма для оценки функционального состояния организма в целом. Средняя частота сердечных сокращений отражает конечный результат многочисленных регуляторных влияний на аппарат кровообращения, характеризует сложившийся в процессе адаптации гомеостаз. Информация о том, как сложился этот гомеостаз, какая «цена» адаптации, содержится в структуре сердечного ритма, его вариабельности. Основы метода оценки функционального состояния организма сформулировал Р.М. Баевский (1979) в виде концепции о трех, наиболее значимых, компонентах функционального состояния: исходном уровне функционирования, напряжении регуляции, состоянии функциональных резервов. Готовность к определенному виду реакции (фоновая активность регуляторных структур) – это исходный тонус вегетативной нервной системы.
Существуют три типа исходного вегетативного тонуса (три типа нейровегетативной конституции). Их принято обозначать как ваготония, эйтония, симпатикотония. Лица с преобладанием ваготонии (ваготоники) характеризуются медленным развертыванием психофизиологических адаптивных механизмов, стремлением к сохранению старых адаптационных программ, склонностью к астеническим эмоциям, к более редкой частоте сердечных сокращений, гипервентиляции, повышенному тонусу мышечных эффекторов. Лица с преобладанием симпатикотонии склонны к активной смене адаптивных психофизиологических программ, стеническим эмоциям, пульс у них чаще повышен, тонус мышечных эффекторов чаще расслаблен. Лица с эйтонией (промежуточная группа) могут тяготеть как к ваготоникам, так и к симпатикотоникам в зависимости от соотношений симпатического и парасимпатического (ваготонического) компонентов. В популяциях таких индивидуумов большинство.
Функциональное состояние сердечно-сосудистой системы с использованием автоматизированного кардиоритмографического комплекса «ORTO Expert» (Игишева Л.Н., Галеев А.Р., 2003) подразумевает регистрацию сердечного ритма беспроводными электродами. Кардиоритмограммы должны записываться в утренние часы в положении лежа после 6–8 минут отдыха, при переходе в вертикальное положение и стоя. За RR-интервал принимается интервал между последовательными QRS-комплексами электрокардиограммы. Записанные кардиоритмограммы включают не менее 200 последовательных RR-интервалов суммарной продолжительностью не менее 128 секунд. С помощью компьютерной программы рассчитываются показатели временного анализа сердечного ритма:
1. ЧСС (частота сердечных сокращений), или среднее значение RR-интервала, характеризующего средний уровень функционирования сердечно-сосудистой системы.
2. М (математическое ожидание) – показатель, отражающий конечный результат всех регуляторных влияний на сердце и систему кровообращения в целом.
3. Мо (мода) – наиболее часто встречающееся значения R-R интервалов, указывающее на доминирующий уровень функционирования синусового узла.
4. АМо (амплитуда моды) – доля кардиоинтервалов, соответствующая значению моды, т.е. величине наиболее часто встречающегося кардиоинтервала.
6. SDNN (стандартное отклонение) – величина, равная квадратному корню из дисперсии RR-интервалов, указывающая на суммарный эффект влияния на синусовый узел.
7. RМSSD (квадратный корень средних квадратов разницы между смежными RR-интервалами) – отражающий быстрые высокочастотные колебания в структуре ВСР.
Диагностическим алгоритмом АПК «ORTO-expert» предусмотрено три варианта заключений об исходном вегетативном тонусе:
1. Преобладание парасимпатического отдела ВНС (ваготония).
2. Смешанный тонус ВНС (эйтония).
3. Преобладание симпатического отдела ВНС (симпатикотония).
Степень напряжения оценивается в диагностическом алгоритме программы АПК «ORTO-expert» по соотношению спектральных компонент ВСР (VLF, LF, HF) с учетом исходного вегетативного тонуса. Предусмотрено 12 вариантов степени напряжения систем регуляции.
1. Нормальное состояние систем регуляции.
2. Регуляция с увеличенным влиянием парасимпатического отдела ВНС.
3. Регуляция с увеличенным влиянием симпатического отдела ВНС.
4. Напряжение систем регуляции за счет значительно увеличенного влияния парасимпатического отдела ВНС.
5. Напряжение систем регуляции за счет значительно увеличенного влияния симпатического отдела ВНС.
6. Напряжение систем регуляции за счет рассогласования влияний симпатического и парасимпатического отделов ВНС.
7. Высокое напряжение систем регуляции за счет чрезмерно увеличенного влияния парасимпатического отдела ВНС.
8. Высокое напряжение систем регуляции за счет чрезмерно увеличенного влияния симпатического отдела ВНС.
9. Высокое напряжение систем регуляции за счет значительного рас-согласования влияний симпатического и парасимпатического отделов ВНС.
10. Очень высокое напряжение систем регуляции за счет одновременного снижения тонуса симпатического и парасимпатического отделов ВНС и централизации регуляции.
11. Резкое напряжение систем регуляции за счет значительного одно-временного снижения тонуса симпатического и парасимпатического отделов ВНС и централизации регуляции.
12. Резкое напряжение систем регуляции за счет значительного одно-временного снижения активности всех компонент системы регуляции сердечного ритма.
Функциональные резервы определяются с учетом динамики параметров ВСР при проведении нагрузочной пробы (активной ортостатической пробы). После записи определенного количества кардиоинтервалов подается звуковой сигнал, который означает, что ребенок должен принять вертикальное положение сам без посторонней помощи и стоять до окончания обследования.
При анализе переходного процесса, как правило, выделяют две фазы. Это основано на представлении о неодинаковом участии сердечного и сосудистого компонентов системной гемодинамики на различных стадиях ортостатической пробы. Выделение сердечного и сосудистого компонентов позволяет судить о преимущественной роли первого в начальной фазе ортостатической реакции и об активной роли второго в фазе компенсаторных сдвигов гемодинамики. До настоящего времени не существует единого общепринятого подхода к анализу переходного процесса. В связи с этим был разработан способ анализа переходного процесса, заключающийся в определении объема работы, которая выполняется сердечно-сосудистой
системой в результате адаптивных регуляторных изменений. Программой АПК «ORTO-expert» предусмотрено 5 вариантов заключений о реакции на ортопробу.
1. Нормальный переходной процесс. Адекватная реакция сердечно-сосудистой системы на ортопробу.
2. Увеличенная реакция сердечно-сосудистой системы на ортопробу.
3. Значительно увеличенная реакция сердечно-сосудистой системы на ортопробу.
4. Снижение реакции сердечно-сосудистой системы на ортопробу.
5. Реакция сердечно-сосудистой системы на ортопробу не определена.
Кроме того, по согласованности изменений статистических параметров MxDMn и АМо оценивается вегетативное обеспечение, которое может быть каким-нибудь из 5 вариантов:
1. Вегетативное обеспечение организма достаточное.
2. Вегетативное обеспечение организма избыточное.
3. Вегетативное обеспечение чрезвычайно избыточное.
4. Вегетативное обеспечение организма недостаточное.
5. Вегетативное обеспечение организма парадоксальное.
Значимость заключений о каждом из трех компонентов (исходного вегетативного тонуса, степени напряжения регуляторных механизмов и функциональных резервов) при оценке функционального состояния организма была определена эмпирическим путем по клиническим данным длительного наблюдения за пациентами педиатрической клиники и учащимися экспериментальных образовательных учреждений. Общее заключение о функциональном состоянии типизировалось в соответствии с представлениями о типах адаптации.
Кроме того АПК «ORTO-expert» предусмотрено семь вариантов заключений с целью дать расширенные количественные представления о напряжении регуляторных механизмов и функциональных возможностях:
1. Достаточные функциональные возможности организма. Оптимальное функционирование систем регуляции.
2. Состояние минимального напряжения при оптимальном функционировании систем регуляции.
3. Повышенный расход функциональных резервов организма. Незначительное напряжение механизмов адаптации.
НАПРЯЖЕНИЕ МЕХАНИЗМОВ АДАПТАЦИИ
4. Снижение функциональных резервов организма. Умеренное напряжение механизмов адаптации.
5. Выраженное снижение функциональных резервов организма. Значительное напряжение механизмов адаптации.
6. Значительное снижение функциональных возможностей организма. Неудовлетворительная адаптация.
7. Резкое снижение функциональных возможностей организма. Срыв адаптации. Возможно наличие заболевания в субкомпенсированном или декомпенсированном состоянии.
Практический опыт показывает, что основными чертами программно-технического комплекса являются простота эксплуатации, короткое время обследования (5–10 мин), надежность результатов диагностики, легкая применимость результатов в практике школьных врачей, фельдшеров, медицинских сестер. ORTO-Expert позволяет быстро и эффективно сделать заключение о типе вегетативной регуляции и адаптационных резервах сердечно-сосудистой системы и организма в целом.
Особая роль в оценке состояния здоровья детей принадлежит правильному учету всех показателей здоровья и распределения школьников в группы здоровья. Как известно, в основу определения групп здоровья положены 4 критерия (С.М. Громбах, 1973): первый – наличие и отсутствие в момент обследования хронических заболеваний, второй – функциональное состояние основных органов и систем организма, третий – уровень достигнутого развития и степень его гармоничности, степень резистентности организма к неблагоприятным воздействиям среды. Наличие и отсутствие заболеваний определяется при врачебном осмотре с участием специалистов (ЛОР, окулист, хирург и т.д.). Функциональное состояние организма
выявляется клиническим методом с использованием функциональных проб (орто-проба и др.). Степень сопротивляемости организма выявляется по подтвержденным острым заболеваниям (респираторные инфекции) и обострениям хронических болезней за предшествующий осмотру год. В соответствии с предложенным подходом дети и подростки в зависимости от состояния здоровья подразделяются на пять групп:
1. Здоровые дети с нормальным развитием и нормальным развитием функций.
2. Здоровые, но имеющие функциональные и некоторые морфологические отклонения, а также сниженную сопротивляемость к острым и хроническим заболеваниям.
3. Больные с хроническими заболеваниями в состоянии компенсации с сохраненными функциональными возможностями организма.
4. Больные с хроническими заболеваниями в состоянии субкомпенсации со сниженными функциональными возможностями организма.
5. Больные хроническими заболеваниями в состоянии декомпенсации со значительно сниженными функциональными возможностями организма. Как правило, дети этой группы инвалиды.
В практической деятельности медицинских работников школы и территориального лечебно-профилактического учреждения зачастую опускается оценка функционального состояния, поскольку предлагаемые нагрузочные пробы (Мартине – Кушелевского, ортоклиностатическая и др.) трудоемки в проведении и оценки результатов. Использование комплекса ORTO позволяет получить результат в течение нескольких минут.
В результате ритмографического обследования школьники распределяются на следующие подгруппы в зависимости от функционального состояния их организма:
1) дети с достаточным или высоким функциональным резервом;
2) дети с незначительным ухудшением функционального состояния, за этими детьми необходимо вести динамическое наблюдение (в нашей практике учащиеся обследуются в каждой учебной четверти), и при наличии неблагоприятных изменений эта группа детей нуждается в подходе, используемом при работе с группами 3 и 4;
3) дети с выраженным ухудшением функционального состояния;
4) дети с резким ухудшением функционального состояния, срывом адаптации.
При осмотре школьный педиатр, имея уже экспресс-информацию об исходном вегетативном тонусе и адаптационных возможностях, находит объяснение, почему имеет место напряжение (дети 3–4 групп) или направляет ребенка на обследование для выяснения возможных причин выявленных нарушений. Таким образом, дальнейшая тактика определяется осмотром врача.
а) Если у школьника диагностирована удовлетворительная адаптация, то он получает комплекс общих профилактических и оздоровительных процедур, и с ним ведется работа по повышению уровня культуры здоровья.
б) Если состояние ребенка расценено как предболезненное и выявлены факторы риска развития определенной патологии, то предлагается соответствующий комплекс мероприятий для коррекции состояния и профилактики возможных заболеваний.
в) Если причина нарушений остается неясной или требует подтверждения с помощью дополнительного обследования, то родителям ребенка рекомендуется обратиться в лечебно-профилактическое учреждение для обследования и лечения.
г) При наличии хронических заболеваний выявленные нарушения расцениваются как проявление декомпенсации и предлагается определенная программа реабилитации.
Необходимо подчеркнуть важность информации, полученной с помощью комплекса ORTO, для комплексной оценки состояния здоровья. Так, известно, что выраженная симпатикотония с чрезмерным включением центрального контура регуляции при проведении ортопробы по данным ритмо-графии в сочетании с психо-эмоциональным напряжением являются ранними признаками гипертонической болезни (Игишева Л.Н., 1996); нарушение сердечного ритма с тенденцией к брадикардии, снижение показателей памяти, внимания, умственной работоспособности могут быть первыми признаками дисбаланса тиреоидной функции, сочетание ваготонии с высокой вегетативной реактивностью и признаками психоэмоционального напряжения может отражать вегетативный дисбаланс при заболеваниях желудочно-кишечного тракта.
Комплекс для обработки кардиоинтервалограмм и анализа вариабельности сердечного ритма «ВариКАРД» (в дальнейшем – комплекс) предназначен для использования в научно-исследовательской и практической работе для оценки состояния вегетативной регуляции, степени напряжения регуляторных систем и состояния различных звеньев управления системой кровообращения. Это позволяет диагностировать ранние проявления изменений механизмов регуляции, которые предшествуют энергетическим и метаболическим нарушениям и, таким образом, имеют прогностическое значение.
Комплекс «ВариКАРД» реализует современную технологию анализа вариабельности сердечного ритма применительно к исследованиям продолжительностью от нескольких минут до нескольких часов и соответствует по своим техническим характеристикам и методическим подходам, принятым как в России, так и за рубежом. Комплексы «ВариКАРД» могут использоваться для получения новой, более точной информации о состоянии системы регуляции сердечного ритма.
Варикард реализует технологию выявления состояний, предшествующих развитию болезни. Технология предназначена не для определения нозологических форм, а для оценки неспецифических механизмов адаптации и риска развития заболеваний практически здоровых людей и лиц, с начальными формами патологии и выдачи заключения об уровне адаптационных возможностей организма и степени напряжения регуляторных систем (табл. 4). Обнаружение состояния, предшествующего развитию патологического процесса во многих случаях позволяет предупредить его возникновение.
Комплекс «ВариКАРД» обеспечивает регистрацию ЭКС и синхронно КИГ (с отображением их на экране монитора в режиме реального времени) для пациентов, не имеющих встроенного кардиостимулятора. Исследование системы регуляции сердечного ритма осуществляется в следующей последовательности:
1. Открытие или создание базы данных (БД). По умолчанию открыта база данных предшествующего сеанса,
2. Открытие или создание картотеки. По умолчанию открыта картотека предшествующего сеанса.
3. Создание карты пациента. При повторных обследованиях карта пациента выбирается из списка.
4. Съем, отображение на экране монитора и запись в БД электро-кардиосигнала (ЭКС) в одном из трех стандартных отведений в течение заданного врачом времени (от 5 минут до 24 часов);
5. Выделение из ЭКС кардиоинтервалограммы (КИГ) и отображение ее на экране монитора;
6. Корректировка КИГ. Корректировка включает в себя визуальный просмотр сохраненных в памяти ЭВМ КИГ и ЭКС с целью редактирования ошибочных отметок R зубцов и выделения экстрасистол. Редактирование осуществляется в интерактивном графическом режиме;
7. Выделение 5-минутных фрагментов КИГ и их математический анализ.
Соотношение функциональных состояний организма
с уровнем напряжения регуляторных систем
Что такое функциональные возможности организма
По существующим представлениям все резервы, используемые для интенсификации деятельности человека, в самом общем смысле могут быть обозначены как функциональные. Скрытые резервные возможности организма в работах первых исследователей, осуществивших формирование общих представлений о функциональных резервах организма, отождествлялись с «жизненными силами организма». К плеяде ученых, чьи заслуги в обобщении накопившихся фактов о резервах организма и их роли в обеспечении взаимодействия организма и среды его обитания признаны выдающимися, безусловно, относятся К.Бернар, В.Кеннон, Д.Баркрофт, Г.Селье и ряд других известных исследователей. В нашей стране впервые понятие «функциональные резервы организма» было представлено академиком Л.А.Орбели в 30-х годах ХХ века. Он утверждал, что организм каждого человека имеет скрытые, или, так называемые, резервные возможности, которые используются, когда он попадает под воздействие негативных факторов. Академик Н.М.Амосов [6] предложил новый термин меры функциональных резервов организма – «количество здоровья». Количественной характеристикой здоровья, по его мнению, является сумма резервных возможностей основных функциональных систем организма и, прежде всего, кислородтранспортной системы. Под «качеством здоровья» понимается способность организма адаптироваться к условиям окружающей среды за счет использования функциональных резервов [4].
В словаре физиологических терминов [42] дано следующее определение: «Функциональные резервы – это диапазон возможного уровня изменений функциональной активности физиологических систем, который может быть обеспечен активационными механизмами организма. Функциональные резервы могут быть связаны с изменением энергетики обмена, что характерно для ткани и органа, а функциональные резервы системы и организма в целом формируются, благодаря перестройке систем регуляции и включению в функциональную систему новых дополнительных структур или замене одной формы реакции на другую. Функциональные резервы – это, прежде всего, резервы регуляторных механизмов».
Н.А. Агаджанян и А.Н. Кислицын [3] функциональные резервы организма определяют, как потенциальную способность организма обеспечить свою жизнедеятельность в необычных или экстремальных условиях.
Под функциональными резервами организма понимается «выработанная в процессе эволюции адаптационная и компенсаторная способность органа, системы и организма в целом усиливать во много раз интенсивность своей деятельности по сравнению с состоянием относительного покоя» [16]. А.С. Мозжухин [29] определяет резервные возможности организма как его скрытые возможности (приобретенные в ходе эволюции и онтогенеза) усиливать функционирование своих органов и систем органов в целях приспособления к чрезвычайным сдвигам во внешней или внутренней среде организма. При этом в качестве системообразующего фактора функциональных резервов рассматривается результат деятельности, обеспечивающий адаптацию организма к различным физическим и психоэмоциональным нагрузкам.
Резервные функциональные возможности проявляются в изменении интенсивности и объема энергетических и пластических процессов обмена веществ на клеточном и тканевом уровнях, в изменении интенсивности протекания физиологических процессов на уровне органов, систем органов и организма в целом [29,21].
Функциональные резервы организма определяют диапазон надежности его функциональных систем, в котором при нарастании нагрузки не происходит нарушения функций органов и систем органов. Потенциальные возможности функциональных резервов заложены в генотипе человека. Эти возможности раскрываются в конкретных условиях жизнедеятельности и могут изменяться под влиянием целенаправленной тренировки, формируя реальные индивидуальные функциональные резервы организма [18].
Функциональные резервы организма обеспечивают возможность изменения функциональной активности его структурных элементов, их возможности взаимодействия между собой для адаптации к воздействию на организм факторов внешней среды с целью обеспечения оптимального для данных конкретных условий уровня функционирования организма и эффективности его деятельности для достижения целесообразного результата адаптации. В процессе адаптации может происходить изменение диапазона резервных возможностей организма и способности к их мобилизации [34].
В.П. Загрядский [23] сформулировал определение функциональных резервов (ФР) «как выработанную в процессе эволюции адаптационную способность организма в целом усиливать во много раз интенсивность своей деятельности по сравнению с состоянием относительного покоя», а на основании обобщения данных по физиологии военного труда сделал вывод, что «физиология человека при воздействии на него экстремальных факторов есть, прежде всего, физиология резервных возможностей организма».
По определению Р.М. Баевского [13], под функциональными резервами понимают «… информационные, энергетические, метаболические ресурсы организма, обеспечивающие его конкретные адаптационные возможности. Для того, чтобы мобилизовать эти ресурсы при изменении условий окружающей среды, необходимо определенное напряжение регуляторных систем. Именно степень напряжения регуляторных систем, необходимая для сохранения гомеостаза, определяет текущее функциональное состояние человека».
Морфофункциональной основой функциональных резервов организма (ФРО) являются структурно-функциональные единицы тканей и органов в совокупности всех составляющих их компонентов и систем регуляции их деятельности. Их функционирование на уровне, обеспечивающем текущие потребности организма, поддержание его гомеостаза и должного объема регуляторно-адаптивных возможностей – главный показатель достаточности ФРО. Достаточность имеющихся в организме ФРО определяет состояние здоровья и трудоспособность человека. Возможности адаптации во многом определяются целесообразной способностью организма к использованию функциональных резервов и в значительной мере зависят от величины ФРО.
Функциональные резервы организма имеют как структурную, так и метаболическую составляющую и отражают основные параметры изменения текущего функционального состояния человека [5]. Функциональное состояние организма и его функциональные резервы – понятия, неразрывно взаимосвязанные и взаимозависимые.
Оценка ФРО человека – одна из важнейших задач клинической физиологии в сфере здоровья человека, решение которой во многом определяется разработкой информативных и адекватных технологий исследования функционального состояния целостного организма на основании данных полипараметрических многосторонних исследований уровня функциональной активности различных его органов и систем. Исследование функциональных резервов (ФР) на основе системного подхода позволило охарактеризовать особенности интеграции ФР его органов и систем, обеспечивающих осуществление адаптационного процесса [20].
Главной целью исследований клинико-физиологического статуса организма является выявление и оценка функциональных расстройств его органов и систем, определение степени их выраженности, а также определения характера функционирования здоровых органов и систем у этого же обследуемого, их роль в обеспечении компенсаторных реакций и резервных возможностей всего организма в целом.
Немаловажной задачей клинико-физиологических исследований является анализ закономерностей формирования ФРО и их изменений, возникающих в зависимости от возраста человека, что весьма актуально с позиций оценки возможностей их коррекции у лиц различных возрастных групп [44]. Особенности эволюции показателей ФРО на протяжении жизни необходимо изучать, а полученные сведения использовать для восстановления и укрепления здоровья.
Адаптивные возможности определяются как запас ФР, состоящих из информационных, энергетических и метаболических резервов, которые расходуются на сохранение постоянства внутренней среды организма и поддержание его равновесия с внешней средой [1]. Возможности механизмов адаптации во многом определяются возможностями мобилизации ФР, которые могут обеспечить адекватный запросам организма уровень функционирования его органов и систем при оптимальном напряжении регуляторных механизмов.
Реакция организма в ответ на воздействие факторов окружающей среды зависит от силы и времени воздействия, а также адаптационных возможностей организма, которые определяются наличием ФР. Состояние целостного организма как интегральный результат деятельности его органов и систем во многом определяется оптимальностью регуляторных механизмов и управляющих воздействий, их способностью обеспечить уравновешенность организма со средой и должную адаптацию к условиям существования. Адаптивные реакции организма происходят за счет затрат энергии и информации, в связи с чем «цена» адаптации определяется степенью напряжения регуляторных механизмов и величиной израсходованных ФР.
Живой организм является открытой термодинамической системой, устойчивость которой в соответствии с законами термодинамики зависит от баланса количеств энергии, поступающими в нее извне и расходуемыми ею на поддержание жизнедеятельности. Жизнеспособность организма, т.е. его функциональные резервы, в большой мере определяются резервами энергии, необходимой для осуществления множества процессов, формирующих жизнеобеспечение организма на всех уровнях его организации. На основе этих представлений Г.Л. Апанасенко [10] предложил «концепцию энергопотенциала биосистемы» и «термодинамическую концепцию здоровья», базирующуюся на предположении о существовании некоего эволюционно-обусловленного порога энергопотенциала биосистемы (резерва организма), выше которого у человека не регистрируются ни эндогенные факторы риска, ни соматические заболевания. Ниже этого порога (при исчерпании резервных возможностей) развиваются вначале эндогенные факторы риска, а затем и хронические соматические заболевания. Этот порог Г.Л. Апанасенко [10] количественно охарактеризовал по показателям максимальной аэробной способности, что позволяет при соответствующих мероприятиях исключить сам риск возникновения заболевания.
Энергодефицитное состояние организма рассматривается, в частности, как первопричина развития донозологических изменений состояния здоровья [24].
Адаптивные реакции осуществляются, прежде всего, за счет повышения функциональной активности органов и систем организма. Адаптация к любому фактору связана с затратами энергоресурсов организма. При оптимальных условиях для жизнедеятельности организма адаптивные реакции минимизированы и энергия расходуется, прежде всего, на фундаментальные жизненные процессы, то есть, на базальный метаболизм. Если значения фактора воздействия выходят за пределы оптимума, то организм использует адаптивные механизмы, связанные со значительно большими энергозатратами. Адаптивное увеличение энергозатрат сопровождается уменьшением энергоресурсов организма, а, следовательно, и его ФР. При этом изменяется энергетический метаболизм, увеличивается использование энергетических, информационных и пластических ресурсов, усиливаются процессы фосфорилирования, происходит мобилизация гликогена и иных резервных источников высокоэнергетических субстанций. Возникающий дефицит энергоресурсов является сигналом для генетического аппарата клеток, запускающим увеличение образования в них митохондрий, ферментов, активизируя синтез белков, нуклеиновых кислот и АТФ. Такая активация генетического аппарата клеток обеспечивает восстановление и рост их энергетического потенциала, а это является основой способности организма к последующим функциональным перестройкам в ходе новых адаптивных реакций в ответ на воздействие факторов внутренней или внешней среды. Таким образом, биоэнергетические процессы в клетках организма, осуществляемые в виде обмена веществ, регулируемого посредством различных механизмов, лежат в основе мобилизации и формирования ФРО. Все процессы, происходящие в организме, следует рассматривать, прежде всего, с позиций гарантированного поддержания термодинамического неравновесия между количеством свободной энергии, поступающей в организм из окружающей среды, и количеством энергии, выделяемой при катаболических превращениях его структур.
Таким образом, наличие энергетического и структурно-функционального резерва – обязательное условие жизнеобеспечения организма. Термодинамическое неравновесие между окружающей средой и организмом – абсолютное условие для его жизнедеятельности, а степень этого неравновесного состояния может быть использована для количественной оценки жизнеспособности [9], т.е. «количества здоровья», являющегося, по определению Н.М.Амосова, мерой ФРО.
Различные уровни здоровья обусловлены различным уровнем ФРО и состоянием регуляторных систем, обеспечивающих их мобилизацию в необходимых ситуациях для обеспечения адаптивных реакций. Мобилизация необходимого ФР, сопровождающаяся формированием состояния напряжения регуляторных систем, характерна для донозологических изменений функционального состояния организма. Снижение ФР организма в ходе адаптивных реакций может определять развитие, как преморбидных состояний, так и состояния болезни.
Развитие методологии оценки ФРО, а также функциональных состояний, пограничных между здоровьем и болезнью – важнейшее научное направление клинической физиологии, основанное на современных представлениях о гомеостазе, адаптации, теории функциональных систем, механизмах регуляции жизнедеятельности человека, в рамках которого решается проблема оценки состояния здоровья, разрабатываются методы донозологической диагностики и критерии развития риска заболевания, что, несомненно, актуально для клинической, профилактической и страховой медицины. Главной задачей клинико-физиологических исследований является обоснование методов оценки адаптивных возможностей организма, критериев, количественно характеризующих текущее состояние его регуляторно-адаптивного статуса, а также прогноза их изменений в ходе индивидуального жизненного пути.
Оценка уровня ФРО позволяет выявлять лица групп риска развития патологических состояний, а в случае возникновения заболеваний, прогнозировать эффективность оздоровительно-реабилитационных технологий. Степень риска определяется, прежде всего, способностью организма противостоять болезнетворным факторам и его способностью адаптироваться к изменению условий окружающей среды, что в целом определяется запасом его жизненных сил, а точнее, функциональными резервами. ФРО во многом определяют его адаптивные возможности и могут рассматриваться, как стратегические ресурсы здоровья. Количественная оценка адаптивных возможностей позволяет оценить и прогнозировать риск развития заболеваний на этапе возникновения донозологических состояний [25].
Исследование ФР и адаптивных возможностей организма на основе анализа мультипараметрической информациии о состоянии ведущих функциональных систем в комплексе с полипараметрической донозологической диагностикой определяют методологический базис интегральной оценки уровня здоровья [43,12,11,38,28]. Здоровье, как биологическая категория, отражает свойство организма сохранять и восстанавливать функциональные резервы, обеспечивающие адаптацию к меняющимся условиям среды и деятельности [37]. Изучение механизмов формирования ФРО и их роли в сохранении и совершенствовании здоровья здорового человека является одной из ведущих задач физиологии, как науки [46]. При качественной и количественной оценке резервов здоровья используется нормоцентрический подход, отличающийся от нозоцентрического, характерного для клинической медицины [41].
В современной медицине клинико-физиологическая оценка ФРО и функционального состояния организма человека во многом определяют эффективность донозологической диагностики, позволяют охарактеризовать резервные возможности отдельных систем и органов и прогнозировать их изменения под влиянием воздействия различных факторов. Донозологическая диагностика преморбидных состояний и профилактика социально-значимых заболеваний, сохранение здоровья здорового человека отнесены к числу приоритетных целей и задач современного здравоохранения в рамках Государственной программы развития здравоохранения Российской Федерации (распоряжение Правительства РФ №2511 от 24 декабря 2012г.).
Исследование ФРО, донозологическая диагностика на ранних стадиях развития адаптационного синдрома и своевременная коррекция функционального состояния признаны наиболее оптимальной методологией охраны здоровья [12,45,31]. Мониторинг функциональных резервов, диагностика ранних стадий адаптационного синдрома и своевременная коррекция нарушений функционального состояния рассматриваются в рамках Отраслевой программы МЗ РФ «Охрана и укрепление здоровья здоровых», утвержденной Приказом Минздрава РФ от 21.03.2003 №114 в качестве наиболее эффективной стратегии сохранения здоровья человека. Разработка и внедрение в практику способов донозологической диагностики функциональных нарушений – основа эффективных профилактических мероприятий [27].
Оценка ФРО неразрывно связана с оценкой его функционального состояния. Механизм взаимодействия различных функциональных систем человека, основанный на процессе перераспределения ФР между ними определяет функциональное состояние организма в целом [5]. Функциональное состояние организма – это интегральная характеристика состояния здоровья, отражающая уровень ФР, который может быть мобилизован для целей адаптации, а также возможности организма обеспечить реализацию адаптивных реакций, что оценивается по данным изменений функций и структур в текущий момент при взаимодействии с факторами внешней среды [8,19]. В процессе реализации адаптивных реакций организма переход от одного функционального состояния к другому происходит в результате изменения уровня функциональной активности систем жизнеобеспечения, степени функционального напряжения механизмов их регуляции и состояния ФРО. Исследование функциональных показателей, позволяющих охарактеризовать состояние функциональных резервов организма – необходимое условие оценки уровня здоровья человека и вероятности риска его нарушения или утраты.
Поддержание гомеостаза является главной целью функциональных изменений, обеспечивающих равновесие между организмом и окружающей средой за счет мобилизации ФР, что сопровождается определенным напряжением регуляторных систем. Степень напряжения регуляторных систем косвенно характеризует уровень ФРО. ФРО имеют прямую связь с уровнем функционирования и обратную со степенью напряжения регуляторных систем [4]. Чем ФРО меньше, тем большее напряжение механизмов регуляции необходимо для поддержания гомеостаза.
Снижение ФРО нарушает способности организма адаптироваться к изменениям условий окружающей среды. Мобилизация ФРО сопряжена с напряжением регуляторных систем. Если «цена адаптации» превышает пределы индивидуального «лимита», то развивается перенапряжение и истощение механизмов регуляции. Перенапряжение механизмов регуляции и связанные с ним снижение функциональных резервов является одним из главных факторов риска развития заболеваний [13].
Оценка ФР по степени напряжения регуляторных систем позволяет охарактеризовать их задействованность в реализации адаптивных перестроек организма, но не позволяет прогнозировать возможности организма реагировать на изменения условий окружающей среды. Для оценки ФРО человека разработаны и разрабатываются все новые технологии резервометрии и аппаратно-диагностические комплексы [14,15]. Резервометрия включает качественную и количественную оценку ФР в целом и адаптивных возможностей различных функциональных систем организма. Тестирование различных звеньев управления физиологическими функциями с использованием функциональной нагрузки является основным способом оценки функциональных резервов механизмов их регуляции.
В рамках данного обзора представляется целесообразным привести некоторые данные о существующих подходах к оценке ФР и адаптивных возможностей организма. Информация о пределах ФРО может быть получена с использованием функциональных тестов. Принято полагать, что оценку ФРО целесообразно проводить, применяя функциональные пробы с физической нагрузкой, которые, прежде всего, усиливают деятельность органов кровообращения и дыхания и по динамике их функциональных показателей судить о резервных возможностях организма. Специальными исследованиями установлено, что методы дозированных по мощности и продолжительности физических нагрузок не уступают по своей информативности в оценке ФР методам с использованием предельных и повторных нагрузок. Это явилось обоснованием метода исследования ряда физиологических функций с оценкой многих параметров, отражающих объем и скорость мобилизации резервов органов и систем органов, эффективность и экономичность использования резервов различного структурного уровня [7].
Большая часть известных функционально-нагрузочных тестов направлена на определение уровня функционирования сердечно-сосудистой и дыхательной систем для оценки их ФР.
Одним из простых функциональных тестов, нашедшим широкое применение в клинико-физиологических исследованиях, является активная ортостатическая проба, позволяющая оценивать функциональные резервы системы регуляции кровообращения. Оценка и прогнозирование функционального состояния целостного организма по данным исследования сердечно-сосудистой системы основано на том, что гемодинамические изменения в различных органах и системах возникают раньше, чем соответствующие функциональные нарушения, а исследование процессов временной организации, координации и синхронизации информационных, энергетических и гемодинамических процессов в сердечно-сосудистой системе позволяет выявлять самые начальные изменения в управляющем звене целостного организма. Сердечно-сосудистая система с ее регуляторным аппаратом рассматриваются как индикатор адаптационных реакций всего организма [13].
Эта концепция явилась основой разработки одного из самых распространенных в прикладной физиологии и клинической практике методов оценки функционального состояния организма – метода анализа вариабельности сердечного ритма [32]. Этот метод позволяет охарактеризовать функциональное состояние организма на основании построения кардиоинтервалограммы и последующем анализе полученных числовых рядов математическими методами. Анализ ВСР позволяет оценить общее напряжение регуляторных механизмов по показателям активности регулярных систем нейрогуморальной регуляции сердца и соотношение между симпатическим и парасимпатическим отделами автономной нервной системы, а комплексная оценка всех показателей дает возможность целостного представления о функциональном состоянии организма.
Недостатком ряда методов является то, что оценка функционального состояния проводят по показателям только одной функциональной системы. Это в значительной мере снижает возможность интегральной оценки резервов организма в целом
Динамическое взаимодействие нескольких функциональных систем, которое обеспечивается при участии различающихся или отчасти общих регуляторных систем в рамках теории функциональных систем носит непредсказуемый характер и зависит от активационных ресурсов каждой из них, определяемых их ФР. В качестве примера такого взаимодействия часто рассматриваются респираторно-кардиальные отношения. Утверждается, что для определения функционального состояния организма достаточно оценить резервные возможности его кардиореспираторной, центральной нервной и нейрогуморальной регуляции, параметры функционирования которых отражают и показатели гомеостаза, и показатели ФР процессов адаптации через соотношение уровня регуляции и степени напряжения механизмов регуляции [38].
Факт влияния дыхания на ритм сердца и активное участие в этом ядер блуждающих нервов, торможение и возбуждение которых передается синусовому узлу через нервные связи, известен давно. В 1963 году М.Клаймс предложил трактовку дыхательной регуляции частоты сердечных сокращений, которая на основании теории автоматического регулирования интерпретирует зависимость между дыханием и величиной вагусного торможения сердца с помощью передаточных функций, построенных по реальным кривым переходных процессов ритма сердца при вдохе и выдохе. В основе феномена сопряженности сердечного и дыхательного ритмогенеза лежит иррадиация возбуждения в продолговатом мозге с дыхательных на сердечные эфферентные нейроны, от которых сигналы по блуждающим нервам передаются к сердцу и, взаимодействуя с интракардиальными ритмогенными структурами, формируют сердечный ритм, синхронный с дыхательным [35].
Установлено, что уровень респираторно-кардиальной синхронизации характеризует степень вегетативной сбалансированности, а респираторно-кардиальные взаимоотношения чрезвычайно лабильны и интегрально отражают системные вегетативные перестройки, происходящие в организме человека при различных внешних воздействиях. Это позволяет использовать их анализ для оценки функционального состояния организма. В этих целях был разработан критерий анализа степени взаимодействия ритмов сердца и дыхания – респираторно-кардиальный коэффициент и программное обеспечение для его расчета [22]. Респираторно-кардиальный коэффициент отражает перераспределение в активности различных уровней регуляции вегетативных функций и позволяет оценивать интегральные характеристики вегетативной реактивности организма при проведении нагрузочных тестов, что, по-видимому, может косвенно свидетельствовать о состоянии функциональных резервов организма.
Дыхание – единственная вегетативная функция человека, активность которой он может менять сознательно. Волевое управление дыхательными движениями осуществляется посредством высшего отдела нервной системы – коры больших полушарий головного мозга, а само произвольное управление дыханием происходит на фоне автоматически регулируемого ритма дыхания, а не вопреки ему [40]. Возможность произвольного изменения глубины и частоты дыхания по заданной программе позволяет использовать явление сопряженности сердечного и дыхательного ритмогенеза для управляемого воздействия на регуляторные системы и механизмы, вовлеченные в этот процесс, что при определенных условиях позволяет синхронизировать ритмы дыхания и сердца. Это позволило создать метод исследования регуляторных и адаптивных возможностей организма человека путем воспроизведения пробы сердечно-дыхательного синхронизма (СДС).
Индуцирование возникновения общего синхронного дыхательного и сердечного ритма посредством вовлечения сердечных эфферентных нейронов в доминантный учащенный дыхательный ритм создается посредством заданной частоты произвольного дыхания, превышающей исходный сердечный ритм. Проба СДС позволяет количественно охарактеризовать межсистемные взаимодействия нескольких вегетативных функций и интегрально оценить регуляторно-адаптивный статус организма [35]. Метод СДС позволяет интегрально оценивать адаптивные возможности организма при различных функциональных состояниях и заболеваниях, поскольку результирующие показатели пробы формируются с участием различных сенсорных входов, центральной и вегетативной нервной систем, координированная работа которых свидетельствует об адекватности регуляторно-приспособительных реакций организма [35,47]. О степени отклонения адаптивных возможностей от нормы судят по выраженности изменений параметров синхронизации на минимальной границе диапазона синхронизации. Регуляторно-адаптивные возможности оцениваются по индексу регуляторно-адаптивного статуса (ИРАС), получаемого интеграцией наиболее информативных показателей пробы СДС.
С позиций клинической физиологии регуляторно-адаптивный статус (РАС), определяемый по пробе СДС, позволяет характеризовать функциональный статус организма. Представляется вполне обоснованным рассматривать ИРАС, как показатель количественной интегральной оценки ФРО и его адаптивного потенциала, а также в качестве показателя их изменений при воздействии различных факторов. ФРО посредством использования различных системных воздействий на организм могут совершенствоваться в процессе жизнедеятельности. Систематическое выполнение физических упражнений позволяет сохранить ФРО и, соответственно, высокий уровень здоровья и работоспособности. Основой физических упражнений является двигательная деятельность, которая сопровождается большим потоком информации в ЦНС, связанным с пропреоцептивной афферентацией от мышц. При этом повышается функциональная активность всех отделов ЦНС, в нейронах увеличивается содержание РНК, активизируется деятельность гипоталамо-гипофизарной системы, вовлекается эндокринная система и достигается оптимальная регуляция сердечно-сосудистой, дыхательной и других систем организма [46].
У физически и психологически тренированных лиц значительное повышение функциональной активности органов и систем происходит с меньшими затратами энергии и при меньшей степени напряжения регуляторных механизмов, а, следовательно, и менее значимыми изменениями ФРО. У опытных парашютистов динамика параметров РАС определенного с использованием пробы СДС в условиях психоэмоционального стресса, существенно отличается от этих же показателей у начинающих парашютистов, что свидетельствует о возрастании стрессоустойчивости в процессе тренировок парашютистов. Уровень стрессоустойчивости, оцениваемый по регуляторно-адаптивному статусу, предопределен величиной ИРАС в исходном состоянии и степенью его изменения при действии стрессогенного фактора [36]. Повышение исходного уровня и менее выраженное его изменение при действии стрессорных воздействий свидетельствуют о повышении в процессе систематических тренировок стрессоустойчивости, а, следовательно, и об увеличении ФРО.
Исследование динамики показателей РАС и ИРАС позволяет получать объективную информацию о трансформации функционального состояния и ФРО под влиянием лечебно-оздоровительных мероприятий и многих других воздействий на организм человека, включая стрессовые и возрастные. Это подтверждено большим пулом исследований у людей различного возраста при различных функциональных состояниях и разнообразных формах патологии [35].
ФРО в ходе адаптивных реакций, обеспечивающих его жизнедеятельность, непрерывно расходуются на поддержание равновесия между организмом и средой и также непрерывно восполняются. ФРО формируются, прежде всего, за счет взаимосвязанных энергетических, метаболических и информационных ресурсов, имеющих свою структурную основу. Временную организацию ФРО можно представить как диалектическое единство процессов их мобилизации и восполнения, а поскольку живая система является неравновесной, то в каждый момент существования организма имеют место некоторые различия между параметрами расходования и восполнения ФР. Таким образом, в каждый момент существует некоторый положительный или отрицательный их баланс по отношению к оптимальному уровню ФР.
Относительно сбалансированный характер этих разнонаправленных процессов имеет место в условиях нормального, адекватного потребностям организма функционирования всех его органов и систем, т.е. при отсутствии каких-либо нарушающих его функциональное состояние воздействий. Такой динамичный принцип организации ФРО обеспечивается постоянным достижением компромисса между процессами их мобилизации и восполнения путем автоматической саморегулируемой оптимизации всех компонентов поддержания и улучшения функционирования его органов и систем в соответствии с текущими потребностями и возможностями при постоянном воздействии разнообразных факторов внешней и внутренней среды. С этих позиций функциональные резервы организма можно рассматривать, как открытую мультипараметрически саморегулируемую систему, настраивающуюся в ходе постоянного развития организма на должную оперативность и достаточность адаптивных переменных по отношению к имеющимся воздействиям. Достаточность ФР – необходимое условие обеспечения должного уровня функционального состояния организма в любой момент его жизнедеятельности. Оптимальный уровень ФРО может со временем меняться. Можно выделить циркадиальные, сезонные и возрастные изменения ФРО. Величина ФРО возрастает по мере созревания организма и снижается при его старении.
Вышеизложенное можно в определенной мере рассматривать с точки зрения выдающегося ученого и философа современного естествознания Марио Бунге [17] на суть истины «истины относительны в том смысле, что они имеют силу только для определенного множества предположений, которые временно рассматриваются как доказанные, то есть не подвергаются сомнению в данном контексте. Они являются также частичными или приблизительными истинами, ибо их подтверждение всегда частично и, кроме того, ограничено во времени».
Существующие представления о формировании ФРО и их использовании в процессе жизнеобеспечения организма не позволяют сформулировать полнозначный перечень закономерностей и принципов, и охарактеризовать значимость различных путей и функциональных приоритетов в организации ФР. Анализ множества факторов, допущений, гипотез и утверждений, систематизация совокупности имеющихся знаний о ФРО – необходимое условие их объяснения в форме удостоверенной логикой научной теории, практическая эффективность которой может быть достигнута тогда, когда она проникает в прикладные науки. К их числу в контексте настоящего обзора можно, прежде всего, отнести восстановительную медицину и клиническую физиологию.
Покровский В.М., д.м.н., профессор, зав. кафедрой нормальной физиологии ГБОУ ВПО КубГМУ Минздрава России, г.Краснодар;
Каде А.Х., д.м.н., профессор, зав.кафедрой общей и клинической патофизиологии ГБОУ ВПО КубГМУ Минздрава России, г.Краснодар.