Что такое фаза и сдвиг фаз
Что такое фаза, фазовый угол и сдвиг фаз
Говоря о переменном токе, часто оперируют такими терминами как «фаза», «фазовый угол», «сдвиг фаз». Обычно это касается синусоидального переменного или пульсирующего тока (полученного путем выпрямления синусоидального тока).
Аргументом функции в данном случае является как раз фаза, то есть положение колеблющейся величины (тока или напряжения) в каждый рассматриваемый момент времени относительно момента начала колебаний. А сама функция принимает значение колеблющейся величины, в этот же момент времени.
В процессе изменения, напряжение принимает множество значений в каждый момент времени, периодически (спустя период времени Т) возвращаясь к тому значению, с которого начиналось наблюдение за данным напряжением.
Можно сказать, что в любой момент времени напряжение находится в определенной фазе, которая зависит от нескольких факторов: от времени t, прошедшего от начала колебаний, от угловой частоты, и от начальной фазы. То что стоит в скобках — полная фаза колебаний в текущий момент времени t. Пси — начальная фаза.
Начальную фазу называют в электротехнике еще начальным фазовым углом, поскольку фаза измеряется в радианах или в градусах, как и все обычные геометрические углы. Пределы изменения фазы лежат в интервале от 0 до 360 градусов или от 0 до 2*пи радиан.
На приведенном выше рисунке видно, что в момент начала наблюдения за переменным напряжением U, его значение не было нулем, то есть фаза уже успела в данном примере отклониться от нуля на некоторый угол Пси, равный около 30 градусов или пи/6 радиан — это и есть начальный фазовый угол.
В составе аргумента синусоидальной функции, Пси является константной, поскольку данный угол определяется в начале наблюдения за изменяющимся напряжением, и потом уже в принципе не изменяется. Однако его наличие определяет общий сдвиг синусоидальной кривой относительно начала координат.
По ходу дальнейшего колебания напряжения, текущий фазовый угол изменяется, вместе с ним изменяется и напряжение.
Для синусоидальной функции, если полный фазовый угол (полная фаза с учетом начальной фазы) равен нулю, 180 градусам (пи радиан) или 360 градусам (2*пи радиан), то напряжение принимает нулевое значение, а если фазовый угол принимает значение 90 градусов (пи/2 радиан) или 270 градусов (3*пи/2 радиан) то в такие моменты напряжение максимально отклонено от нуля.
Обычно в ходе электротехнических измерений в цепях переменного синусоидального тока (напряжения), наблюдение ведут одновременно и за током и за напряжением в исследуемой цепи. Тогда графики тока и напряжения изображают на общей координатной плоскости.
В этом случае частота изменения тока и напряжения идентичны, но различны, если смотреть на графики, их начальные фазы. В этом случае говорят о фазовом сдвиге между током и напряжением, то есть о разности их начальных фазовых углов.
Иными словами фазовый сдвиг определяет то, на сколько одна синусоида смещена во времени относительно другой. Фазовый сдвиг, как и фазовый угол, измеряется в градусах или радианах. По фазе опережает тот синус, период которого начинается раньше, а отстает по фазе тот, чей период начинается позже. Фазовый сдвиг обозначают обычно буквой Фи.
Фазовый сдвиг, например, между напряжениями на проводах трехфазной сети переменного тока относительно друг друга является константой и равен 120 градусов или 2*пи/3 радиан.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Сдвиг фаз переменного тока и напряжения
Мощность постоянного тока, как мы уже знаем, равна произведению напряжения на силу тока. Но при постоянном токе направления тока и напряжения всегда совпадают. При переменном же токе совпадение направлений тока и напряжения имеет место только в случае отсутствия в цепи тока конденсаторов и катушек индуктивности.
Для этого случая формула мощности
На рисунке 1 представлена кривая изменения мгновенных значений мощности для этого случая (направление тока и напряжения совпадают). Обратим внимание на то обстоятельство, что направления векторов напряжения и тока в этом случае совпадают, то есть фазы тока и напряжения всегда одинаковы.
Рисунок 1. Сдвиг фаз тока и напряжения. Сдвига фаз нет, мощность все время положительная.
При наличии в цепи переменного тока конденсатора или катушки индуктивности, фазы тока и напряжения совпадать не будут.
О причинах этого несовпадения читайте в моем учебники для емкостной цепи и для индуктивной цепи, а сейчас установим, как будет оно влиять на величину мощности переменного тока.
Представим себе, что при начале вращения радиусы-векторы тока и напряжения имеют различные направления. Так как оба вектора вращаются с одинаковой скоростью, то угол между ними будет оставаться неизменным во все время их вращения. На рисунке 2 изображен случай отставания вектора тока Im от вектора напряжения Um на угол в 45°.
Рисунок 2. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 45, мощность в некоторые периоды времени становиться отрицательной.
Рассмотрим, как будут изменяйся при этом ток и напряжение. Из построенных синусоид тока и напряжения видно, что когда напряжение проходит через ноль, ток имеет отрицательное значение.
Затем напряжение достигает своей наибольшей величины и начинает уже убывать, а ток хотя и становится положительным, но еще не достигает наибольшей величины и продолжает возрастать. Напряжение изменило свое направление, а ток все еще течет в прежнем направлении и т. д. Фаза тока все время запаздывает по сравнению с фазой напряжения. Между фазами напряжения и тока существует постоянный сдвиг, называемый сдвигом фаз.
Действительно, если мы посмотрим на рисунок 2, то заметим, что синусоида тока сдвинута вправо относительно синусоиды напряжения. Так как по горизонтальной оси мы откладываем градусы поворота, то и сдвиг фаз можно измерять в градусах. Нетрудно заметить, что сдвиг фаз в точности равен углу между радиусами-векторами тока и напряжения.
Вследствие отставания фазы тока от фазы напряжения его направление в некоторые моменты не будет совпадать с направлением напряжения. В эти моменты мощность тока будет отрицательной, так как произведение положительной величины на отрицательную величину всегда будет отрицательным. Эта значит, что внешняя электрическая цепь в эти моменты становится не потребителем электрической энергии, а источником ее. Некоторое количество энергии, поступившей в цепь во время части периода, когда мощность была положительной, возвращается источнику энергии в ту часть периода, когда мощность отрицательна.
Чем больше сдвиг фаз, тем продолжительнее становятся части периода, в течение которых мощность делается отрицательной, тем, следовательно, меньше будет средняя мощность тока.
При сдвиге фаз в 90° мощность в течение одной четверти периода будет положительной, а в течение другой четверти периода — отрицательной. Следовательно, средняя мощность тока будет равна нулю, и ток не будет производить никакой работы (рисунок 3).
Рисунок 3. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 90, мощность в течении одной четвери периода положительна, а в течении другой отрицательна. В среднем мощьноть равна нулю.
Теперь ясно, что мощность переменного тока при наличии сдвига фаз будет меньше произведения эффективных значений тока и напряжения, т. е. формулы
в этом случае будут неверны
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Сдвиг фаз у переменных токов
Переменные токи одинаковой частоты могут отличаться друг от друга не только по амплитуде, но и по фазе, т. е. могут быть сдвинуты по фазе.
Если два переменных тока одновременно достигают амплитудных значений и одновременно проходят через нулевые значения, то эти токи совпадают по фазе. В этом случае сдвиг фаз между токами равен нулю (рис. 1, а).
Однако возможны случаи, когда амплитудные (и нулевые) значения данных токов не совпадают друг с другом по времени, т. е. имеется тот или иной сдвиг фаз, не равный нулю. На рис. 1, б показаны токи, сдвинутые по фазе на четверть периода (T/4).
Сдвиг фаз обычно обозначают греческой буквой φ и часто выражают в градусах, считая весь период равным 360°, подобно тому, как один полный оборот соответствует 360°. Таким образом, сдвиг фаз на четверть периода обозначают φ = 90°, а при сдвиге фаз на половину периода пишут φ = 180е.
Рис. 1. Различные сдвиги фаз между двумя переменными токами
Связь между периодом переменного тока T и углом 360° можно установить из опыта, в котором получают переменную синусоидальную ЭДС при равномерном вращении витка (или катушки) в однородном магнитном поле. В этом случае за один оборот витка, т. е. за время его поворота на угол 360°, ЭДС совершает одно полное синусоидальное колебание. Таким образом, действительно период T соответствует углу 360°.
Это же следует из математического выражения для переменного тока, т. е. из его уравнения. Если переменный ток начал свои изменения от нулевой фазы, когда t = 0, ωt = 0 и sin ωt = 0, то по прошествии одного периода получится
В этот момент фазовый угол составляет 2π радиан или 360°, и, следовательно, sin ωt = sin 2π = sin 360° = 0. При изменении угла от 0 до 2π радиан, или до 360°, синус совершает полный цикл своих изменений. Соответственно этому переменный ток совершает одно полное колебание.
Следует помнить, что только токи одной и той же частоты могут иметь вполне определенный сдвиг фаз. При различной частоте токов сдвиг фаз между ними не является постоянным, а все время меняется. Например, для токов i1 и i2 изображенных на рис. 2 и имеющих частоты, отличающиеся друг от друга в два раза, сдвиг фаз в моменты времени, изображенные точками 0, 1, 2, 3, 4, равен соответственно 0; 90; 180; 270; 360°, т. е. на протяжении одного периода тока i1 значение φ изменяется от 0 до 360°.
Рис. 2. Переменный сдвиг фаз между токами различной частоты
Все сказанное о сдвиге фаз между токами относится также к напряжениям и электродвижущим силам. В дальнейшем мы рассмотрим случаи, когда будет существовать сдвиг фаз между напряжением и током.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Фазовый сдвиг. Фаза сигнала.
Фазовый сдвиг – что это? А фаза звукового сигнала? Попробуем немного разобраться в этом вопросе. Не факт, что смогу ясно разъяснить этот вопрос, но примерное понятие должно получиться.
Пролог
Музыканты, меломаны, а так же, любители “хай-эндовского” звука, в разговорах между собой, часто используют, вроде бы всем понятные термины – спектр, фаза, частота, меандр, глубина и локализация сцены, и прочие узкозначимые слова. Но зачастую, даже некоторые из “знатоков”, до конца не могут понять, что же это на самом деле такое.
Такие понятия как – “Фазовый сдвиг” очень часто упоминаются при проектировании кроссоверов для акустики. Подробно про кроссоверы мы уже поговорили чуть ранее.
При наличии интернета выяснить тот или иной вопрос не составляет проблем. В отсутствии такового – можно сходить в библиотеку, найти пару реально научных книжек и почитать саму теорию. Но все нынче стали на столько занятые, что даже выуживать информацию из интернета – времени нет. Попробуем найти простое объяснение – что же такое “фазовый сдвиг”?
Что означают эти термины на самом деле? Можно ли “пощупать” их истинное значение? Да, однозначно, можно. Сейчас мы попробуем разобраться в вопросе – “Что такое – фазовый сдвиг?”
Фаза сигнала
Для начала порассуждаем, что такое – “фаза сигнала”. Фаза сигнала никогда не существует сама по себе. Это виртуальное понятие. Вообще, можно сказать так: Фаза – это уровень сигнала в текущий момент времени, или иначе, – это уровень звукового давления в текущий момент времени в измеряемой точке пространства (к примеру, это место, где находится слушатель).
Вот картинка, изображающая звуковые волны в фазе. К примеру, звуковые сигналы двух каналов нашей акустики совпадают. В этом случае, музыка звучит чётко, без каких либо искажений. В музыкальном произведении можно услышать все задействованные инструменты, которые звукорежиссер слышал при записи. Имеется некая область звукового давления, где ощущается “эффект присутствия” – это то, о чем спорят меломаны и аудиофилы. Иными словами – получаем ожидаемый звук и впечатления.
На следующей картинке ниже, фаза смещена на 90 градусов, или на четверть фазы. Этот эффект можно услышать в виде небольшого эха. Это может и не связано с оборудованием самой комнаты. Эффект звуковой задержки с небольшим смещением фазы вносит некую сумятицу в музыку, теряется “картинка”, исполнители “уходят в разные стороны”, появляется ощущение, что находишься в огромном зале с каменными стенами. Звуки становятся не естественными, искаженными.
Далее, мы наблюдаем смещение фаз на 180 градусов. То есть, акустика в этом случае играет в противофазе. Чуть ниже подробно об этом. В данном случае, общая “звуковая картина” на столько становится не понятной, что слушать музыку становится просто не интересно и противно. Звуки становятся “ватные”, многие часты просто могут отсутствовать, хотя они и воспроизводятся колонками. Может сложиться такое впечатление, что слушаешь музыку в завязанной шапке-ушанке.
Далее, немного теории без научных выкладок.
К примеру, слушая, сидя у себя дома, свои акустические системы, мы слышим, как они порождают в районе дивана те или иные переменные звуковые давления. Звуковые волны складываются друг с другом. Эти волны имеют разные частоты и амплитуду. Они то нарастают, то убывают.
Противофаза
А теперь предположим, что давления от обоих колонок (звуковые волны) изменяются одинаково, но имеют противоположную направленность. То есть, одна колонка излучает “плюсовые” волны, а другая колонка – “минусовые”. Это может случиться, когда слушатель, случайно, перепутал клеммы подключения одного из каналов (левый канал например).
Немного проще. Динамики правой колонки играют вперёд, а динамики в левой колонке играют назад, одновременно пытаясь воспроизводить одну и туже частоту. Одна колонка создаёт давление, скажем, 1 Паскаль, а другая – минус 1 Паскаль. Такой эффект называется – противофаза.
Общая громкость звука в том месте, где находится слушатель, теоретически, должна стремится к нулю, но это не означает, что какой либо звук вообще будет не слышно. В этом случае, может сильно поломаться “звуковая сцена”, “картинка” музыкального произведения, а в каком либо месте помещения звук реально будет затухать, но не совсем. Звук станет “смазанным” и исчезнут некоторые частотные составляющие из общего звукового сигнала.
Не будем вдаваться в непростую научную формулировку, приводя формулы. Можно сказать так, что из второй колонки звук доходит к слушателю, но с задержкой по времени (не забываем, что сигнал на колонки подаётся одинаковый!). И задержка в этом случае получается именно 180 градусов. Почему так? Попробуем разобраться на картинке, нагляднее – понятнее.
360 градусов – длина периода сигнала (Фаза), 180 градусов – половина периода сигнала.
Фазовый сдвиг
А теперь, мы дошли до момента, когда можно уже разобрать вопрос – “Что такое – фазовый сдвиг?”
Фаза — это временная связь двух сигналов. И в течении периода колебания меняется от 0 до 360 градусов. Потом опять – от 0 до 360, и так далее. Можно сказать, что это мгновенный уровень сигнала в определенной точке времени внутри периода. Саму фазу мы не слышим, но слышим фазовый сдвиг одного сигнала относительно другого.
Вики про это говорит так: Сдвиг фаз — это разность между начальными фазами двух переменных величин, изменяющихся во времени периодически с одинаковой частотой.
Фазовый сдвиг является безмерной величиной и измеряется в градусах или долях периода.
Вывод
Предположим, вы подключили два динамика к выходу усилителя (пусть физически это будут ваши акустические системы). Один динамик как положено – плюс на плюс, минус на минус. А второй, перепутали и он получился подключенным плюс на минус и минус на плюс. Включив усилитель, что мы услышим? Вероятнее всего – жалкое подобие звука. Один динамик будет как-бы гасить сигнал другого своими звуковыми волнами.
На картинках ниже будет нагляднее. Представим, что это мы видим на экране осциллографа, который измеряет сигналы левого и правого каналов вашего усилителя.
На первой картинке левый и правый канал – в фазе. Сигнал одинаков в обоих каналах. Линии идеально повторяют сигнал. У них синхронная амплитуда на всем протяжении. Тут можно сказать, что сигналы находятся «в фазе». Если практически, то суммирующий уровень сигнала будет усиливаться сигналами левого и правого каналов.
Вторая картинка демонстрирует осциллограмму полного не совпадения. “Горб” левого канала по времени совпадает с “ямой” правого. Чисто по школьной физике – в результате сложения таких колебаний, в идеале, получится ноль. Эти сигналы будут взаимно подавлять друг друга. Сигналы в противофазе.
Фазовый сдвиг подразумевает запаздывание первого сигнала по времени относительно второго.
При двух гармонических колебаниях одной частоты результатом сдвига фаз будет частичное ослабление сигнала. Степень ослабления результирующего сигнала будет зависеть как раз от этого самого сдвига фаз. В предельном случае (в противофазе), на выходе получится абсолютный ноль.
Все эти картинки и рассуждения, о физических свойствах звуковых волн, отдаленно относятся к практике, к реальности. Звуки любого музыкального инструмента нельзя назвать – “одночастотным сигналом” (как осциллограмма на картинках). Частичный сдвиг фаз может ослаблять одни частоты по сравнению с другими. А иногда, усиливать некоторые из них.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Основы электропитания. Зачем нужен сдвиг по фазе
В предыдущих частях цикла были рассмотрены общие моменты, касающиеся генерации и потребления электрической энергии, в том числе и особенностей ее передачи на большие расстояния. Теперь, когда известно, что при передаче больших мощностей без высокого напряжения не обойтись, настало время разобраться с одним из самых важных участков системы электроснабжения, так называемой «последней милей» – электропроводки с напряжением 230/400 B, ведь именно к этому сегменту подключены электрические розетки как дома, так и на производстве. Однако прежде чем приступить к изучению особенностей пользовательского сегмента системы электроснабжения, придется вначале рассмотреть несколько теоретических вопросов, поскольку без этого будет непонятно, почему было сделано именно так.
Чем отличается постоянное напряжение от переменного
Даже люди далекие от техники знают, что при установке батареек, например, в детскую игрушку или пульт дистанционного управления, нужно соблюдать полярность – неправильная установка этих элементов питания, в лучшем случае, приведет к тому, что устройство просто не будет работать, а в худшем – выведет из строя и оборудование, и элемент питания. Поэтому на корпусах батареек всегда указывают, какой из выводов имеет положительный (обозначается значком «+»), а какой – отрицательный (обозначается значком «–») потенциал (Рисунок 1). Более того, при создании подобных источников питания их терминалы обычно делают разными, чтобы предотвратить возможность ошибочного подключения. В неформальном общении эту защиту обычно называют «защитой от дурака». Примером тому является батарейка «Крона», терминалы которой позволяют надежно подключить ответную часть разъема батареи только в правильной полярности.
Рисунок 1. | Указание полярности напряжения на источниках питания постоянного тока. (Кадр из к/ф «Матрица»). |
В то же время, в типовых электрических розетках два контакта, предназначенных для протекания тока, являются абсолютно одинаковыми, что позволяет вставлять вилку в розетку двумя способами. При этом ни о какой полярности подключения при использовании бытовых электроприборов речи не идет. Это связано с тем, что напряжение в электрических розетках постоянно меняет свою величину. Если взять, например, некоторый идеализированный вольтметр, способный мгновенно проводить измерения, и определить напряжение в розетке, то окажется, что в разные моменты времени оно будет принимать совершенное разные значения (Рисунок 2). То есть в определенное время полярность напряжения в розетке будет условно положительной, в другое – условно отрицательной, а в некоторые моменты напряжение будет вообще равно нулю.
Рисунок 2. | Мгновенное значение напряжения в розетке в разные моменты времени. |
В русскоязычной технической литературе напряжение, способное изменить свою полярность, называют «переменным», а напряжение, полярность которого не изменяется – «постоянным». Многим начинающим специалистам очень сложно усвоить эти понятия. У обычных людей слово «постоянный» прочно связано со словом «неизменный», а, поскольку в нашем мире все меняется, то и постоянного (неизменного) напряжения не может существовать. Более того, любое напряжение питания непостоянно, например, мы же выключаем иногда радиоприемник, следовательно, его напряжение питания исчезает (изменяется), поэтому многие мои студенты уверены, что радиоприемники питаются переменным (непостоянным) напряжением.
Более точно эти термины описаны в англоязычной технической литературе. Переменному напряжению соответствует термин «Alternating Voltage», который можно дословно перевести как «чередующееся» или «перемежающееся» напряжение – напряжение, полярность которого постоянно изменяется. Аналог «постоянного» напряжения – «Direct Voltage» – можно перевести как «направленное» напряжение – напряжение, которое не меняет своей полярности.
Однако изменить устоявшуюся терминологию, зафиксированную во многих нормативных документах, уже невозможно, поэтому придется привыкать, что переменное напряжение – это напряжение постоянно (!) меняющее свою полярность и величину, а постоянное напряжение может менять свою величину, но не может менять полярность, то есть тоже не является, в абсолютном смысле слова, постоянным.
Кстати, если постоянное напряжение периодически меняет свою величину, то его часто называют пульсирующим напряжением – напряжением, величина которого изменяется с определенной частотой при неизменной полярности. Различие между постоянным и пульсирующим напряжением весьма условно, часто одно и то же напряжение одни специалисты называют постоянным, а другие – пульсирующим. Однако в курсе «Основы электропитания» не предусмотрено столь глубокое изучение этого вопроса, поэтому дальше будем считать, что существует два вида напряжений: постоянное (не меняющее полярность) и переменное (полярность которого изменяется).
Ключевые особенности переменного напряжения
Итак, батарейка является источником постоянного напряжения, а электрическая розетка – переменного. Но почему для мощных энергосистем был выбран именно этот способ передачи энергии, ведь большинство электроприборов, в том числе и электронное оборудование, от источников переменного напряжения принципиально работать не могут и требуют дополнительного преобразования переменного напряжения в постоянное?
В самом начале коммерческого использования электричества постоянный ток был уже неплохо изучен, а переменный считался малопригодным для практического применения. Более того, переменный ток считали вредным и опасным для человека. Не последнюю роль в этом сыграло противостояние Томаса Эдисона и Джорджа Вестингауза, известное как «Война токов», начавшееся в 80-х годах 19-го века и закончившееся только в 2007 году полной победой переменного напряжения. Период «Войны токов» был не самым красивым в истории, и если бы не работы Никола Тесла, выполнившего огромный объем исследований свойств переменного тока, то неизвестно как бы вообще развивались электрические системы.
Основным недостатком постоянного напряжения является сложность изменения его величины. Даже на сегодняшний день простых и эффективных преобразователей постоянного напряжения не существует. До появления мощных полупроводниковых приборов изменить величину постоянного напряжения можно было только с помощью умформеров (система «мотор-генератор») (Рисунок 3) или вибропреобразователей. И те, и другие имели значительные массу, габариты и стоимость, требовали из-за наличия механических компонентов постоянного обслуживания и являлись источниками шума, вибрации и электромагнитных помех. Появление в 20-м веке мощных полупроводниковых транзисторов и диодов позволило значительно улучшить характеристики этого вида вторичных источников питания. Однако нужно понимать, что в этих схемах постоянное напряжение вначале преобразуется в переменное, а затем обратно в постоянное. До сих пор устройства, напрямую изменяющие величину постоянного напряжения, существуют только в виде абстрактных математических моделей [1].
Рисунок 3. | Принцип преобразования постоянного напряжения с помощью системы «мотор-генератор». |
В предыдущей части цикла было показано, что для передачи электрической энергии на большие расстояния напряжение линий электропередач приходится многократно изменять – и повышать, и понижать. Но из-за того, что изменить величину постоянного напряжения не так просто, протяженность первых энергосистем не превышала 1.5 км – стоимость проводов и преобразователей для передачи энергии на большие расстояния была в то время очень высокой.
Рисунок 4. | Устройство и принцип работы трансформатора. |
А вот величину переменного напряжения можно легко изменить с помощью трансформаторов, имеющих очень простую конструкцию. Простейший трансформатор состоит из магнитопровода (его часто называют сердечником) и двух обмоток (Рисунок 4). Если одну из обмоток подключить к источнику напряжения, то в ней начнет протекать ток. Этот ток создаст в магнитопроводе магнитный поток Ф, который, согласно закону Фарадея, приведет к появлению на выводах всех обмоток ЭДС самоиндукции e:
(1) |
где N – количество витков обмотки.
Обратите внимание, что ЭДС может возникнуть только при условии постоянного изменения магнитного потока Ф. Если подключить обмотку трансформатора к источнику постоянного напряжения, тогда магнитный поток изменяться не будет [2] (поскольку dФ/dt = 0), и ЭДС исчезнет [3].
А вот если подключить обмотку трансформатора к источнику переменного напряжения, тогда магнитное поле в магнитопроводе будет постоянно изменяться, и на других обмотках трансформатора, согласно формуле (1), возникнет ЭДС, форма которой будут соответствовать форме первичного напряжения. Таким образом, с помощью трансформатора можно энергетически связать две электрически изолированные цепи, передавая энергию через магнитное поле.
Важным свойством трансформатора является возможность простой регулировки выходного напряжения, поскольку для идеального (без потерь) устройства выполняется одно простое условие:
(2) |
где V1, V2, N1, N2 – соответственно, напряжения и количество витков первой и второй обмоток.
Из формулы (2) видно, что напряжение на выходе трансформатора определяется соотношением числа витков обмоток N2/N1, называемым коэффициентом трансформации:
(3) |
Если количество витков вторичной обмотки больше количества витков первичной (N2 > N1), тогда трансформатор будет повышать напряжение, а если наоборот (N2
Сноски
1) Существует ряд схем, например, делители напряжения, параметрические и компенсационные стабилизаторы, позволяющих изменить величину постоянного напряжения без дополнительных преобразований. Однако эти схемы принципиально не могут увеличить напряжение. Кроме того, их КПД напрямую зависит от соотношения входного и выходного напряжения и может оказаться недопустимо малым.
2) Математическая конструкция «dΦ/dt» означает «первая производная магнитного потока Φ по времени t». Она показывает, на какую величину (dΦ) изменился магнитный поток Φ за время (dt), при условии, что интервал наблюдения стремится к нулю (dt → 0). Если магнитный поток за время dt не изменился (dΦ = 0), то и первая производная будет равна нулю.
3) На самом деле, магнитные процессы в трансформаторе намного сложнее. В частности, магнитный поток Φ не может резко измениться. Поэтому сразу после подключения обмотки трансформатора к источнику постоянного напряжения магнитный поток будет нарастать в течение некоторого времени, что приведет к появлению ЭДС, однако рано или поздно она исчезнет.
4) Мерцание света при освещении вращающихся объектов может привести к стробоскопическому эффекту – когда кажется, что объект неподвижен, в то время как он вращается с большой скоростью. Это явление может быть как полезным (используется, например, в электропроигрывателях для установки скорости вращения диска), так и опасным для жизни (например, при освещении рабочих мест станков).
5) Это справедливо для мощностей больше 1 кВт. При меньших мощностях дешевле использовать однофазные системы.