что такое большая цистерна у плода на узи
Что такое большая цистерна у плода на узи
1. Сокращения:
• Расширение большой цистерны (РБЦ)
2. Определения:
• Размер большой цистерны >10 мм
б) Лучевая диагностика:
1. Общие сведения:
• Самый четкий диагностический критерий:
о Расширенное пространство в ЗЧЯ, заполненное ЦСЖ
• Размер:
о В норме размер большой цистерны (Слева) При УЗИ в косой аксиальной плоскости видно РБЦ. Червь мозжечка сохранен, IV желудочек выглядит нормально. Визуализируется ППП. Следовательно, плоскость для измерения глубины большой цистерны выбрана верно.
(Справа) При УЗИ в косой аксиальной плоскости видна выгнутая перегородка большой цистерны. Визуализируются рудиментарные стенки кармана Блейка, увеличивающегося при задержке формирования отверстия. В некоторых случаях РБЦ правильнее описать как гигантскую ККБ.
2. УЗИ при расширении большой цистерны головного мозга у плода:
• Большую цистерну измеряют в косой аксиальной плоскости на уровне полушарий мозжечка:
о При этом также должна визуализироваться ППП
о Избегайте измерений в косой полуфронтальной плоскости:
— Ориентируясь на такое изображение, можно ошибочно диагностировать РБЦ или дефект нижней поверхности червя мозжечка
• Должна быть видна нормально сформированная перегородка, пересекающая большую цистерну:
о Часто при РБЦ она выгнута наружу
о Обычно она выбухает на уровне соединения с червем мозжечка и его полушариями ниже червя
о Идет кзади до затылочной кости
• IV желудочек сформирован нормально
• Нормально сформированные полушария мозжечка
• Червь мозжечка развит полностью, имеет нормальное строение
3. МРТ при расширении большой цистерны головного мозга у плода:
• В аксиальной плоскости визуализируется РБЦ
• В сагиттальной плоскости червь мозжечка полностью покрывает IV желудочек:
о Нормальный угол между червем мозжечка и покрышкой моста
о Нормальная точка шатра и первичная борозда
• Может выявляться неровность внутренней пластинки кости черепа:
о Образуется при пульсации ЦСЖ
4. Рекомендации по лучевой диагностике:
• Плод тщательно исследуют на наличие сопутствующих пороков развития:
о Их обнаруживают менее чем в 20% случаев:
— Чаще всего выявляется вентрикуломегалия
о >Т18:
— Пороки развития сердца
— Кисты сосудистого сплетения
— Омфалоцеле
— Сжатые пальцы
— «Стопа-качалка»
(Слева) При МРТ в аксиальной плоскости у плода на 35-й неделе гестации видно типичное расположение РБЦ. Крыша IV желудочка остается прикрытой червем мозжечка.
(Справа) При МРТ на Т2-ВИ в сагиттальной плоскости визуализируется РБЦ. Количество ЦСЖ в ЗЧЯ увеличено, но червь мозжечка сформирован нормально и не повернут. Обратите внимание на точку шатра и первичную борозду червя Расположение синусного стока также нормальное.
в) Дифференциальная диагностика расширения большой цистерны головного мозга у плода:
1. ККБ:
• Персистирующий карман Блейка в ЗЧЯ
• Нормально сформированный червь мозжечка повернут кпереди
2. Арахноидальная киста:
• Экстрааксиальное новообразование, заполненное ЦСЖ:
о Сдавливание прилежащих тканей головного мозга
о Смещение или облитерация перегородки большой цистерны
3. СДУ:
• Кистозное расширение IV желудочка, напрямую соединенного с РБЦ
• Сопровождается недоразвитием мозжечка
4. Агенезия мозжечка: полная или частичная:
• Частично отсутствует задняя часть червя мозжечка, расширения ЗЧЯ не наблюдается
г) Патологоанатомические особенности. Общие сведения:
• Эмбриогенез:
о Большая цистерна состоит из двух камер:
— Срединная камера, расположенная между перегородками большой цистерны (т.е. стенками кармана Блейка), заполнена ЦСЖ
— Боковые камеры возникают при образовании полостей (т.е. истинного субарахноидального пространства) первичной мозговой оболочки
о Образование отверстия Мажанди кармана Блейка, соединяющего карман Блейка (который в свою очередь сообщается с IV желудочком) и большую цистерну:
— Отверстие кармана Блейка при завершении фенестрации становится отверстием Мажанди
о При задержке образования отверстия карман Блейка или ЗЧЯ расширяется
о После фенестрации происходит декомпрессия кармана Блейка:
— Червь мозжечка занимает положение напротив ствола мозга
— Увеличивающееся пространство в ЗЧЯ наполняется ЦСЖ → РБЦ
д) Клинические особенности:
1. Клиническая картина:
• Обычно является случайной находкой
• Может быть одним из многих симптомов при Т18
2. Естественное течение и прогноз:
• Чаще всего доброкачественная патология, сопровождающаяся различными нарушениями строения крыши ромбовидного мозга:
о Ранее разнообразие этих пороков описывали как комплекс Денди-Уокера
• Если находка изолированная, риск анеуплоидии низкий, высока вероятность нормального развития
е) Особенности диагностики. Признаки, учитываемые при интерпретации результатов:
• При слишком остром угле ультразвукового сканирования может наблюдаться картина, напоминающая РБЦ
• Червь мозжечка тщательно исследуют для исключения его частичной агенезии
ж) Список использованной литературы:
1. D’Antonio F et al: Systematic review and meta-analysis of isolated posterior fossa malformations on prenatal ultrasound: nomenclature, diagnostic accuracy and associated anomalies. Ultrasound Obstet Gynecol. ePub, 2015
2. Ghali R et al: Perinatal and short-term neonatal outcomes of posterior fossa anomalies. Fetal Diagn Ther. 35(2): 108—17, 2014
3. Robinson AJ et al: The cistema magna septa: vestigial remnants of Blake’s pouch and a potential new marker for normal development of the rhombencephalon. J Ultrasound Med. 26(1):83—95, 2007
Видео УЗИ головного мозга плода в норме
— Вернуться в оглавление раздела «Акушерство.»
Редактор: Искандер Милевски. Дата обновления публикации: 23.9.2021
УЗИ пороков развития задней черепной ямки плода
Авторы: Hérbene Jose Figuinha Milani, Enoch Quindere de Sá Barreto, Renato Luis da Silveira Ximenes, Carlos Alberto Raimundo Baldo, Edward Araujo Júnior, Antonio Fernandes Moron
Вступление
Ультразвуковая диагностика пороков развития задней ямки в пренатальном периоде является сложной задачей, имеющей большое значение для консультирования и наблюдения беременных женщин. Эти пороки развития охватывают широкий спектр объектов, начиная от нормальных вариантов до серьезных аномалий, часто с аналогичными аспектами на УЗИ плода. Различные термины используются для описания этих аномалий без единого подхода к их описанию; и метод оценки структур задней ямки во время беременности, который обычно выполняется в осевых плоскостях черепа плода с помощью ультразвука, не подходит.
Цель этого исследования состояла в том, чтобы рассмотреть особенности ультразвуковой оценки задней ямки плода с акцентом на нейросонографические аспекты, а также описать наиболее важные результаты дородовых ультразвуковых исследований основных пороков развития задней ямки, которые могут повлиять на плод.
Особенности развития структур
Во время беременности мозг плода, включая структуры задней ямки, претерпевает больше изменений, чем любой другой орган. Поэтому, прежде чем приступить к оценке задней ямки в пренатальном периоде, участвующие специалисты должны быть знакомы с аспектами развития этих структур (анатомическими и эмбриологическими) с целью диагностики отклонений в их образовании, чтобы избежать путаницы между нормальными аспектами развитие и возможные пороки развития.
Задняя ямка состоит в основном из следующих структур:
Эмбриологически структуры задней ямки происходят из заднего мозга (ромбэнцефалон). Мозжечок, мост и верхняя часть четвертого желудочка возникают из среднего мозга, тогда как луковица и нижняя часть четвертого желудочка возникают из продолговатого мозга.
Для ультразвуковой оценки задней ямки плода важно помнить, что карман Блейка представляет собой нормальную эмбриологическую структуру начала развития плода, которая часто исчезает примерно на 18 неделе беременности, с закрытием четвертого желудочка (т. е. Когда больше нет связи между четвертым желудочком и большой цистерной).
Тем не менее, связь между четвертым желудочком и цистерной все еще может быть выявлена с помощью УЗИ до 20 недели беременности.
УЗИ является методом выбора для скрининга и диагностики пороков развития центральной нервной системы плода, в том числе задней ямки.
При обычном скрининге ультразвуковые изображения пороков развития задней ямки получают при осевом обзоре трансцеребеллярной плоскости, когда датчик расположен над брюшной полостью беременной женщины. В этой плоскости оцениваются следующие аспекты (рис. 1):
Тем не менее, многоплоскостная оценка этих структур (включая изображения, полученные в сагиттальной и корональной плоскостях) необходима для дифференциальной диагностики пороков развития задней ямки, которые, согласно руководствам ISUOG, должны быть частью нейросонографической оценки.
Многоплоскостной подход является основой нейросонографического исследования головного мозга плода, которое выполняется путем выравнивания датчика со швами и родничками головки плода. Трансвагинальные датчики имеют преимущество в том, что работают с более высокой частотой, чем трансабдоминальные, и, следовательно, позволяют лучше определять анатомические детали.
Рисунок 1 : Аксиальное ультразвуковое исследование трансцеребеллярной плоскости, оценка полушарий мозжечка (форма и контуры); червь (более эхогенная структура между двумя полушариями мозжечка); биометрия мозжечка (трансцеребеллярный диаметр); форма и поперечный диаметр большой цистерны; и размер четвертого желудочка.
В корональной проекции трансцеребеллярной плоскости (рис. 2) оцениваются следующие структуры: мозжечок и червь. Эта плоскость очень важна для дифференциации между полушариями мозжечка и червем, что облегчает диагностику агенезии червя.
Рисунок 2 : Корональное УЗИ трансцеребеллярной плоскости, оценивающее мозжечок; червь (более высокоэхогенная структура, расположенная между двумя полушариями мозжечка, желтая стрелка). Корональная визуализация очень важна для дифференциации между полушариями мозжечка и червем.
В случаях после 24 недели беременности оценить большую цистерну (форму и диаметр); и определить положение намета, который является важным маркером для дифференциальной диагностики кистозных мальформаций задней ямки. Также возможно количественно определить вращение вверх червя мозжечка и намета, измерив два угла: угол между мостом и червем; и между мостом и наметом.
3D УЗИ также может быть полезным инструментом в этой оценке, поскольку оно позволяет проводить многоплоскостную оценку (посредством использования трехмерных приложений, таких как многоплоскостные, контрастно-объемные изображения и OmniView) (рис. 4).
Рисунок 4 : 3D-УЗИ задней ямки на 28 неделе беременности, что позволяет проводить многоплоскостную оценку (OmniView). A: Аксиальное изображение в трансцеребеллярной плоскости. В: Реконструкция в сагиттальной плоскости.
Пороки развития
Пороки развития задней ямки изначально можно разделить на две группы: те, в которых увеличена большая цистерна, и те, в которых она нормальна. Если цистерна увеличена, следует исследовать связь между четвертым желудочком и цистерной; если такое сообщение идентифицировано, следует заподозрить сложный порок Денди-Уокера; если нет, то следует заподозрить мега-цистерну магна.
Таким образом, дифференциальный диагноз будет основан на оценке в средней сагиттальной плоскости: если шатер и червь ненормальны, а намет поднят, следует подозревать порок развития Денди-Уокера; если шатер и червь ненормальны, а намет находится в нормальном положении, следует подозревать гипоплазию червя; если шатер, червь и намет в норме, следует заподозрить кисту Блейка.
Три объекта, описанные выше, соответствуют комплексу Денди-Уокера. В оценках только в осевой плоскости они представляют аналогичные ультразвуковые результаты (связь между четвертым желудочком и большой цистерной, как показано на рисунке 5), поэтому оценка в средней сагиттальной плоскости является фундаментальной для дифференциального диагноза.
Рисунок 5 : Аксиальное УЗИ в трансцеребеллярной плоскости, показывающее связь между четвертым желудочком и большой цистерной (стрелка).
Порок развития Денди-Уокера
Порок развития Денди-Уокера определяется как кистозное расширение четвертого желудочка, связанное с агенезией / гипоплазией червя мозжечка и возвышением намета.
Аксиальное УЗИ показывает связь между четвертым желудочком и цистерной, в то время как сагиттальные изображения показывают аномальный шатер, агенезию / гипоплазию червя с вращением вверх и подъем намета (рис. 6). Это часто сопровождается другими пороками развития центральной нервной системы, такими как изменения в мозолистом теле и межполушарных кистах.
Рисунок 6 : Аксиальное УЗИ с пороком развития Денди-Уокера, показывающее связь между четвертым желудочком и большой цистерной (белая стрелка). Сагиттальный вид показывает аномальный шатер, агенез / гипоплазию червя с вращением вверх и подъем намета (желтая стрелка).
При гипоплазии червь имеет нормальную форму, но небольшие размеры. Аксиальное УЗИ показывает связь между четвертым желудочком и большой цистерной. Сагиттальное ультразвуковое исследование показывает маленькие размеры червя (краниокаудальные и переднезадние диаметры, малы для гестационного возраста), аномальный шатер и нормальное положение намета (рис. 7).
Рисунок 7 : Аксиальное УЗИ плода с гипоплазией червя, показывающее связь между четвертым желудочком и большой цистерной (белая стрелка). Ультразвуковое исследование сагиттального типа показывает небольшого червя, аномальный шатер и намет в нормальном положении (желтая стрелка).
Киста кармана Блейка
Киста кармана Блейка на УЗИ представляет собой очевидную связь между большой цистерной и четвертым желудочком, хотя червь и шатер нормальные (наблюдается только вращение червя вверх). Намет находится в нормальном положении. Многие авторы считают эту аномалию отсроченным закрытием четвертого желудочка, что может быть просто нормальным анатомическим вариантом.
Мега-цистерна магна определяется как увеличение большой цистерны (до диаметра ≥ 10 мм), когда другие структуры задней ямки в норме. При аксиальном УЗИ связь между четвертым желудочком и большой цистерной не будет видна, и поперечное измерение цистерны будет ≥ 10 мм, тогда как ультразвуковое исследование сагиттального отдела покажет, что червь, шатер и намет в норме.
Арахноидальная киста определяется как сбор спинномозговой жидкости, которая не имеет связи с большой цистерной. Хотя ультразвук показывает увеличение размеров области цистерны, наблюдается внешнее сжатие мозжечка (полушария мозжечка могут выглядеть асимметрично на изображениях, полученных в осевой плоскости).
Гипоплазия мозжечка (обычно диагностируется в третьем триместре беременности) характеризуется меньшим, чем обычно, мозжечком. Ультразвук показывает трансцеребеллярный диаметр ниже 10-го процентиля для гестационного возраста. Величина цистерны может казаться ложно увеличенной из-за того, что мозжечок маленький (рис. 8).
Рисунок 8 : УЗИ плода с гипоплазией мозжечка, показывающее трансцеребеллярный диаметр ниже 10-го процентиля для гестационного возраста.
Понтоцеребеллярная гипоплазия определяется как уменьшение размера мозжечка вместе с плоским (тонким) мостом. Диагноз может быть трудно установить с помощью ультразвука и подозревается только в том случае, если поперечный диаметр мозжечка мал для гестационного возраста и не виден червь.
Ромбэнцефалосинапсис описывается как слияние полушарий мозжечка вместе с различными степенями гипоплазии / агенезии у червя. Аксиальное УЗИ обычно показывает мозжечок с поперечным диаметром, который является нормальным или ниже 10-го процентиля для гестационного возраста, и имеет треугольную форму. В корональной плоскости, ткани полушарий мозжечка непрерывны в средней части, а червя не наблюдается (рис. 9).
Рисунок 9 : Корональное УЗИ плода с ромбэнцефалосинапсисом, показывающее, что слои полушарий мозжечка непрерывны в средней части, и нет видимого червя (наконечников стрел). Аксиальное УЗИ может показать мозжечок с поперечным диаметром, который является нормальным или ниже 10-го процентиля для гестационного возраста, и с треугольной формой.
Агенезия червя определяется как полное отсутствие червя мозжечка. Ультразвуковая диагностика в пренатальном периоде часто затруднена. Одним из примеров является синдром Жубера, аутосомно-рецессивное расстройство, характеризующееся агенезией червя, умственной отсталостью, атаксией и ненормальным поведением.
Односторонние поражения мозжечка характеризуются полным или частичным разрушением мозжечка. Такие поражения связаны с внутриутробным повреждением (инфаркт, инфекция или кровоизлияние).
Ультразвуковое исследование мозга новорожденных детей (нормальная анатомия)
УЗИ сканер HS70
Точная и уверенная диагностика. Многофункциональная ультразвуковая система для проведения исследований с экспертной диагностической точностью.
Показания для проведения эхографии мозга
Акустическим окном для исследования мозга может служить любое естественное отверстие в черепе, но в большинстве случаев используют большой родничок, поскольку он наиболее крупный и закрывается последним. Маленький размер родничка значительно ограничивает поле зрения, особенно при оценке периферических отделов мозга.
Для проведения эхоэнцефалографического исследования датчик располагают над передним родничком, ориентируя его так, чтобы получить ряд корональных (фронтальных) срезов, после чего переворачивают на 90° для выполнения сагиттального и парасагиттального сканирования. К дополнительным подходам относят сканирование через височную кость над ушной раковиной (аксиальный срез), а также сканирование через открытые швы, задний родничок и область атланто-затылочного сочленения.
По своей эхогенности структуры мозга и черепа могут быть разделены на три категории:
Нормальные варианты мозговых структур
Борозды и извилины. Борозды выглядят как эхогенные линейные структуры, разделяющие извилины. Активная дифференцировка извилин начинается с 28-й недели гестации; их анатомическое появление предшествует эхографической визуализации на 2-6 нед. Таким образом, по количеству и степени выраженности борозд можно судить о гестационном возрасте ребенка.
Сосудистые сплетения могут быть источником внутрижелудочковых кровоизлияний у доношенных детей, тогда на эхограммах видна их четкая асимметрия и локальные уплотнения, на месте которых затем образуются кисты.
Сильвиев водопровод и IV желудочек. Сильвиев водопровод (aquaeductus cerebri) представляет собой тонкий канал, соединяющий III и IV желудочки (см. рис. 1), редко видимый при УЗ исследовании в стандартных позициях. Его можно визуализировать на аксиальном срезе в виде двух эхогенных точек на фоне гипоэхогенных ножек мозга.
IV желудочек (ventriculus quartus) представляет собой небольшую полость ромбовидной формы. На эхограммах в строго сагиттальном срезе он выглядит малым анэхогенным треугольником посередине эхогенного медиального контура червя мозжечка (см. рис. 1). Передняя его граница отчетливо не видна из-за гипоэхогенности дорсальной части моста. Переднезадний размер IV желудочка в неонатальном периоде не превышает 4 мм.
Мозолистое тело. Мозолистое тело (corpus callosum) на сагиттальном срезе выглядит как тонкая горизонтальная дугообразная гипоэхогенная структура (рис. 2), ограниченная сверху и снизу тонкими эхогенными полосками, являющимися результатом отражения от околомозолистой борозды (сверху) и нижней поверхности мозолистого тела. Сразу под ним располагаются два листка прозрачной перегородки, ограничивающие ее полость. На фронтальном срезе мозолистое тело выглядит тонкой узкой гипоэхогенной полоской, образующей крышу боковых желудочков.
Полость прозрачной перегородки и полость Верге. Эти полости расположены непосредственно под мозолистым телом между листками прозрачной перегородки (septum pellucidum) и ограничены глией, а не эпендимой; они содержат жидкость, но не соединяются ни с желудочковой системой, ни с субарахноидальным пространством. Полость прозрачной перегородки (cavum cepti pellucidi) находится кпереди от свода мозга между передними рогами боковых желудочков, полость Верге расположена под валиком мозолистого тела между телами боковых желудочков. Иногда в норме в листках прозрачной перегородки визуализируются точки и короткие линейные сигналы, происходящие от субэпендимальных срединных вен. На корональном срезе полость прозрачной перегородки выглядит как квадратное, треугольное или трапециевидное анэхогенное пространство с основанием под мозолистым телом. Ширина полости прозрачной перегородки не превышает 10-12 мм и у недоношенных детей шире, чем у доношенных. Полость Верге, как правило, уже полости прозрачной перегородки и у доношенных детей обнаруживается редко. Указанные полости начинают облитерироваться после 6 мес гестации в дорсовентральном направлении, но точных сроков их закрытия нет, и они обе могут обнаруживаться у зрелого ребенка в возрасте 2-3 мес.
Базальная (c. suprasellar) цистерна включает в себя межножковую, c. interpeduncularis (между ножками мозга) и хиазматическую, c. chiasmatis (между перекрестом зрительных нервов и лобными долями) цистерны. Цистерна перекреста выглядит пятиугольной эхоплотной зоной, углы которой соответствуют артериям Виллизиева круга.
Ножки мозга (pedunculus cerebri), мост (pons) и продолговатый мозг (medulla oblongata) расположены продольно кпереди от мозжечка и выглядят гипоэхогенными структурами.
Паренхима. В норме отмечается различие эхогенности между корой мозга и подлежащим белым веществом. Белое вещество чуть более эхогенно, возможно, из-за относительно большего количества сосудов. В норме толщина коры не превышает нескольких миллиметров.
Стандартные эхоэнцефалографические срезы
Рис. 4. Плоскости коронального сканирования (1-6).
Расшифровка результатов 1 скрининга при беременности
Комбинированный пренатальный скрининг проводится на 11-14 неделе беременности при размере эмбриона не менее 45 мм и не более 84 мм. Это комплексное обследование плода для оценки параметров его развития. Основная его задача – раннее выявление пороков развития плода, профилактика детской инвалидности, снижение младенческой и детской смертности.
Первый скрининг состоит из инструментальной части – проведение УЗИ и лабораторной – анализ крови на определение концентрации хорионического гонадотропина (βХГЧ) и ассоциированного с беременностью протеина А (РАРР-А). Совокупные результаты этих показателей позволяют спланировать тактику ведения беременности.
Почему обследование проводится на сроке 11-14 недель
Первый триместр – это период формирования всех органов и структур организма. К концу первого триместра заканчивается эмбриональный и начинается фетальный период развития плода. Именно в сроке от 11 недель 1 дня до 13 недель 6 дней беременности наиболее хорошо визуализируются эхографические маркеры хромосомных аномалий.
Кому нужно пройти обследование
По результатам исследования можно судить о риске рождения детей с хромосомными болезнями и врожденными пороками развития, поэтому рекомендуется внимательно отнестись к вопросу и обследоваться всем беременным. Показаниями к обязательному пренатальному скринингу первого триместра являются:
Как подготовиться
Подготовка к первому скринингу выражается в щадящей диете. Погрешности питания могут сказаться на общем состоянии женщины и снизить точность результатов. За неделю до обследования:
За сутки до скрининга:
Желательно соблюдать умеренную физическую активность, если для этого нет противопоказаний. Также важны прогулки, полноценный отдых.
Проведение обследования
Анализ крови и УЗИ выполняются в один день, чтобы избежать погрешностей из-за разницы срока.
Только по расшифровке результатов УЗИ и анализа на гормоны делается вывод о возможных рисках.
Что показывает УЗИ
На скрининге при беременности производится фетометрия плода – определение размеров частей тела и оцениваются все анатомические структуры.
Полученные результаты сравниваются со статистической таблицей, в которой указан процентиль попадания в выборку нормативных значений. При показателях менее 5 и более 95 назначаются дополнительные обследования.
Во время ультразвукового исследования в 1 триместре оценивают следующие параметры: кости свода черепа и головной мозг, позвоночник, передняя брюшная стенка, конечности плода, структуры лица, органы грудной клетки и брюшной полости, а также основные эхографические маркеры хромосомных аномалий.
Толщина воротникового пространства (ТВП)
Область между внутренней поверхностью кожи плода и наружной поверхностью мягких тканей, покрывающих шейный отдел позвоночника. ТВП считается наиболее важным маркером хромосомных аномалий.
Это пространство после 13 недели начинает уменьшаться, поэтому возможность его оценить есть только на первом скрининге.
Срок | Толщина воротниковой зоны в мм | ||
Процентиль 5 | Процентиль 50 | Процентиль 95 | |
11 недель | 0,8 | 1,6 | 2,4 |
12 недель | 0,7 | 1,6 | 2,5 |
13 недель | 0,7 | 1,7 | 2,7 |
Несоответствие результатов нормативным значениям говорит о повышенном риске развития хромосомных патологий. В зависимости от сформировавшегося набора хромосом, это могут быть синдром Дауна, Патау, Эдвардса, Шерешевского-Тернера. Для уточнения диагноза в этом случае могут быть назначены биопсия хориона или плаценты, анализ пуповинной крови, околоплодных вод. Только после проведения дополнительных исследований можно поставить точный диагноз.
Копчико-теменной размер (КТР)
Показывает расстояние между копчиковой и теменной костями. По этому параметру на УЗИ определяют точный срок гестации, а также устанавливают соотношение массы плода к его КТР.
Незначительное отклонение от норм говорит об особенностях телосложения и не является поводом для беспокойства.
Срок | Копчико-теменной размер в мм | ||
Процентиль 5 | Процентиль 50 | Процентиль 95 | |
11 недель | 34 | 42 | 50 |
12 недель | 42 | 51 | 59 |
13 недель | 51 | 63 | 75 |
Если скрининг при беременности показал результаты, превышающие нормы, это указывает, что плод достаточно крупный. Показатель существенно меньше говорит либо о неправильно определенном сроке гестации (в этом случае проводится повторное обследование через 1-1,5 недели), либо о замедлении развития вследствие внутриутробной гибели, нарушенного гормонального фона или инфекционного заболевания матери, генетических отклонений.
Кости свода черепа и головной мозг
Уже с 11 недели при УЗ-исследовании можно обнаружить дефекты костей черепа, что говорит о тяжелых пороках развития плода, несовместимых с жизнью. Оценка головного мозга основана на изучении так называемой «бабочки» – сосудистых сплетений боковых желудочков. Четкая визуализация и ее симметричность говорит о нормальном развитии головного мозга.
Срок | БПР, ЛЗР в мм | ||
Процентиль 5 | Процентиль 50 | Процентиль 95 | |
11 недель | 13, 19 | 17, 21 | 21, 23 |
12 недель | 18, 22 | 21, 24 | 24, 26 |
13 недель | 20, 26 | 24, 29 | 28, 32 |
Носовая кость
К концу триместра она должна быть сформирована, четко визуализироваться.
Срок | Носовая кость в мм | ||
Процентиль 5 | Процентиль 50 | Процентиль 95 | |
11 недель | визуализируется, не измеряется | визуализируется, не измеряется | визуализируется, не измеряется |
12 недель | 2 | 3,1 | 4,2 |
13 недель | 2 | 3,1 | 4,2 |
Патологией носовой кости считается ее отсутствие, гипоплазия (очень маленькие размеры) и изменение ее эхогенности.
Диаметр грудной клетки, окружность головы и живота, длина бедренной кости также позволяют судить о пропорциональности развития.
Состояние сердца
При исследовании сердца оценивается его расположение, устанавливается наличие четырех камер сердца – два предсердия и два желудочка и оценивается их симметричность. Измеряется частота сердечных сокращений.
Срок | Частота сердечных сокращений в ударах за минуту | ||
Процентиль 5 | Процентиль 50 | Процентиль 95 | |
11 недель | 153 | 165 | 177 |
12 недель | 150 | 162 | 174 |
13 недель | 147 | 159 | 171 |
Венозный проток (ВП) – прямая коммуникация между пупочной веной и центральной венозной системой. При нормально развивающейся беременности кровоток в ВП представляет собой трехфазную кривую. Появление реверсного кровотока может говорить о наличии патологии плода.
Что показывает анализ крови
Результаты УЗИ сопоставляются с показателями ассоциированного с беременностью протеина А из плазмы матери (PAPP-A) и хорионическим гонадотропином человека (ХГЧ). Значения приведены в таблице:
Срок | ХГЧ в нг/мл | PAPP-A в мЕд/л |
11 недель | 17,4 – 130,4 | 0,46 – 3,73 |
12 недель | 13,4 – 128,5 | 0,79 – 4,76 |
13 недель | 14,2 – 114,7 | 1,03 – 6,01 |
Отличия от референсных значений может говорить о патологиях матери или плода.
Интерпретация обследования
Первое исследование оценивается только по совокупности всех показателей. Отдельно взятый параметр не может стать основанием для точного заключения. В протоколе фиксируются данные УЗИ, анализа на гормоны, отражаются риски вероятных заболеваний и комплексный медианный коэффициент MoM. Он указывает совокупное отклонение полученных результатов от средних значений. Коэффициент должен находиться в интервале от 0,5 до 2,5. Рассчитывается он специализированными программами.
Что может повлиять на результат
Современное диагностическое оборудование позволяет оценить более 15 параметров плода, построить его объемную реконструкцию для исследования органов на ранних периодах развития, рассчитать возможные риски с высокой точностью. Обращайтесь в хорошо оснащенные клиники и доверяйте специалистам с подтвержденной квалификацией.