что такое аллели в генетике

Аллели

Аллели (аллельные гены) — это различные формы одного и того же гена. Аллель — это одна из форм определенного гена. У разных генов может быть разное количество аллелей. Если аллелей гена существует больше двух, то говорят о множественном аллелизме.

В диплоидных (содержащего двойной набор хромосом) клетках организма присутствует по два аллеля каждого гена. Аллели одного и того же гена находятся в одинаковых локусах (местах) гомологичных хромосом.

Если два аллеля одного гена в клетках организма одинаковы, то такой организм (или клетка) называется гомозиготным по данному признаку. Если аллели разные, то организм называется гетерозиготным.

Взаимодействие аллельных генов

Аллели одного гена, находясь в одном организме, взаимодействуют между собой, и от этого взаимодействия зависит, как проявит себя признак, обусловленный соответствующим геном.

Полное доминирование

Чаще всего встречается такой тип взаимодействия как полное доминирование, при котором один аллельный ген проявляется и полностью подавляет проявление другого аллельного гена. В данном случае первый называется доминантным, а второй — рецессивным.

В случае полного доминирования генотипы AA и Aa будут иметь одинаковый фенотип.

Полное доминирование наблюдается при проявлении, например, цвета семян гороха. У гетерозиготных ( Aa ) растений по этому признаку семена всегда желтые, как и у гомозиготных по доминантному аллелю ( AA ). Зеленый цвет определяется рецессивным аллелем и поэтому подавляется.

При множественном аллелизме отношения между аллелями могут быть неоднозначными. Если имеет место быть исключительно полное доминирование, то один ген может быть доминантным по отношению ко второму, но рецессивным по отношению к третьему. В таком случае строят ряды ( A > a’ > a» > …), в которых отражают отношения доминирования. Так, например, наследуется окраска шерсти у многих животных, цвет глаз.

Кроме полного доминирования встречаются и другие типы взаимодействия аллелей: неполное доминирование, кодоминирование, сверхдоминирование, комплементация аллелей и некоторые другие.

Неполное доминирование

В случае неполного доминирования гетерозиготный генотип будет иметь промежуточное значение признака. В этом случае доминантный аллель лишь частично подавляет рецессивный. В результате в фенотипе проявляется некое промежуточное значение признака.

Например, цвет цветков ночной красавицы с генотипом AA красный, aa — белый, Aa — розовый.

Кодоминирование

При кодоминировании два аллельных гена, оказавшись в одном организме, полностью проявляют себя. Ни один из них никак не подавляет другой. В случае кодоминирования отсутствуют доминантно-рецессивные отношения между аллелями. В итоге в организме синтезируется два разных белка, определяющих один и тот же признак. Нечто похожее происходит при сверхдоминировании и межаллельной комплиментации.

Сверхдоминирование

Сверхдоминирование — это такой тип взаимодействия аллельных генов, когда у гетерозиготных особей ( Aa ) признак сильнее проявляется, чем у обеих гомозиготных ( AA и aa ). Причина подобного явления лежит в достаточно сложных биохимических процессах, связанных с тем, что аллели кодируют несколько разные, но аналогичные по своим функциям полипептиды. В итоге признак как бы накапливается. Сверхдоминирование лежит в основе такого явления как гетерозис, когда дочерние организмы более жизнеспособны, чем родительские.

Помимо перечисленных существуют и другие более редкие типы взаимодействия аллелей.

Частота аллелей

Частота встречаемости аллельных генов в популяции может быть различной. Обычно рецессивные гены редки и по-сути являются мутациями доминантного аллеля. Многие мутации являются вредными. Однако именно мутантные гены создают материал для действия естественного отбора и как следствие процесса эволюции.

В гипотетической идеальной популяции (в которой не действует естественный отбор, которая имеет неограниченно большой размер, изолирована от других популяций и так далее) частота генотипов (по тому или иному гену) не меняется и подчиняется закону Харди-Вайнберга. Согласно этому закону распределение генотипов в популяции будет укладываться в уравнение: p 2 + 2pq + q 2 = 1. Здесь p и q — частоты (выраженные в долях единицы) аллелей в популяции, p 2 и q 2 — частоты соответствующих гомозигот, а 2pq — частота гетерозигот.

Источник

Аллели

Алле́ли (от греч. ἀλλήλων — друг друга, взаимно) — различные формы одного и того же гена, расположенные в одинаковых участках (локусах) гомологичных хромосом и определяющие альтернативные варианты развития одного и того же признака. В диплоидном организме может быть два одинаковых аллеля одного гена, в этом случае организм называется гомозиготным, или два разных, что приводит к гетерозиготному организму. Термин «аллель» предложен В. Иогансеном (1909 г.) [1]

Нормальные диплоидные соматические клетки содержат два аллеля одного гена (по числу гомологичных хромосом), а гаплоидные гаметы — лишь по одному аллелю каждого гена. Для признаков, подчиняющихся законам Менделя, можно рассматривать доминантные и рецессивные аллели. Если генотип особи содержит два разных аллеля (особь — гетерозигота), проявление признака зависит только от одного из них — доминантного. Рецессивный же аллель влияет на фенотип, только если находится в обеих хромосомах (особь — гомозигота). В более сложных случаях наблюдаются другие типы аллельных взаимодействий (см. ниже).

Содержание

Типы аллельных взаимодействий

Множественные аллели

Множественный аллелизм — это существование в популяции более двух аллелей данного гена. В популяции оказываются не два аллельных гена, а несколько. Возникают в результате разных мутаций одного локуса. Гены множественных аллелей взаимодействуют между собой различным образом.

В популяциях как гаплоидных, так и диплоидных организмов обычно существует множество аллелей, для каждого гена. Это следует из сложной структуры гена — замена любого из нуклеотидов или иные мутации приводят к появлению новых аллелей. Видимо, лишь в очень редких случаях любая мутация столь сильно влияет на работу гена, а ген оказывается столь важным, что все его мутации приводят к гибели носителей. Так, для хорошо изученных у человека глобиновых генов известно несколько сотен аллелей, лишь около десятка из них приводит к серьёзным патологиям.

Летальные аллели

Летальными называются аллели, носители которых погибают из-за нарушений развития или заболеваний, связанных с работой данного гена. Между летальными аллелями и аллелями, вызывающими наследственные болезни, есть все переходы. Например, больные хореей Хантингтона (аутосомно-доминантный признак) обычно умирают в течение 15—20 лет после начала заболевания от осложнений, и в некоторых источниках предлагается считать этот ген летальным.

Обозначение аллелей

Обычно в качестве обозначения аллеля применяют сокращение названия соответствующего гена до одной или нескольких букв; чтобы отличить доминантный аллель от рецессивного, первую букву в обозначении доминантного пишут заглавной.

См. также

Интересные факты

Примечания

Литература

что такое аллели в генетике. 20px. что такое аллели в генетике фото. что такое аллели в генетике-20px. картинка что такое аллели в генетике. картинка 20px. Аллели (аллельные гены) — это различные формы одного и того же гена. Аллель — это одна из форм определенного гена. У разных генов может быть разное количество аллелей. Если аллелей гена существует больше двух, то говорят о множественном аллелизме.
что такое аллели в генетике. 14px Searchtool.svg. что такое аллели в генетике фото. что такое аллели в генетике-14px Searchtool.svg. картинка что такое аллели в генетике. картинка 14px Searchtool.svg. Аллели (аллельные гены) — это различные формы одного и того же гена. Аллель — это одна из форм определенного гена. У разных генов может быть разное количество аллелей. Если аллелей гена существует больше двух, то говорят о множественном аллелизме. Генетика
Введение • История • Связанные темы • Список организаций • Список генетических терминов
Ключевые компонентыХромосома • ДНК • Нуклеотид • РНК • Геном
Поля генетикиКлассическая генетика · Консервационная генетика · Экологическая генетика · Иммуногенетика · Молекулярная генетика · Популяционная генетика · Квантитативная генетика
АрхеогенетикаСеверной и Южной Америки · Британских островов · Европы · Италии · Ближнего Востока · Южной Азии
Связанные темыГенетик · Геномика · Генетический код • Медицинская генетика · Молекулярная эволюция · Обратная генетика • Генетическая инженерия • Генетическое разнообразие • Наследственность • Генетический мониторинг

Полезное

Смотреть что такое «Аллели» в других словарях:

АЛЛЕЛИ — (от греч. allelon друг друга взаимно) (аллеломорфы), различные формы одного и того же гена, расположенные в одинаковых участках (локусах) гомологичных (парных) хромосом; определяют варианты развития одного и того же признака. В нормальной… … Большой Энциклопедический словарь

Аллели — альтернативные варианты генов одного и того же локуса хромосомы (Источник: «Словарь терминов микробиологии») … Словарь микробиологии

Аллели — (греч. allēlōn взаимно) одно из альтернативных (двух или более) состояний гена, каждое из которых характеризуется уникальной последовательностью нуклеотидов. Аллели гена находятся в локусах (гомологичных участках) гомологичных (парных) хромосом и … Физическая Антропология. Иллюстрированный толковый словарь.

Аллели — I Аллели (греч. allēlōn взаимно) различные формы состояния генов, занимающих в гомологичных хромосомах идентичные локусы; аллельная пара генов образуется при оплодотворении и может состоять из идентичных или неидентичных аллелей см. Ген. II… … Медицинская энциклопедия

АЛЛЕЛИ — Формы состояния гена, вызывающие фенотипические различия, локализованные в одном локусе гомологических хромосом. Для одних локусов могут быть две аллельные формы, для других до 20 и более. Множественные аллели возникали путем мутации исходного… … Термины и определения, используемые в селекции, генетике и воспроизводстве сельскохозяйственных животных

аллели — (от греч. allēlōn друг друга, взаимно) (аллеломорфы), различные формы одного и того же гена, расположенные в одинаковых участках (локусах) гомологичных (парных) хромосом; определяют варианты развития одного и того же признака. В нормальной… … Энциклопедический словарь

аллели — (греч. allelon друг друга, взаимно; син.: аллеломорфы, гены аллельные) формы состояния одного и того же гена, занимающие идентичные локусы гомологичных хромосом и обусловливающие фенотипические различия особей … Большой медицинский словарь

Аллели — (от греч. allēlōn друг друга, взаимно) наследственные задатки (Гены), расположенные в одинаковых участках гомологичных (парных) хромосом и определяющие направление развития одного и того же признака. Термин введён датским учёным В.… … Большая советская энциклопедия

АЛЛЕЛИ — (от греч. друг друга, взаимно) (аллеломорфы), разл. формы одного и того же гена, расположенные в одинаковых участках (локусах) гомологичных (парных) хромосом; определяют варианты развития одного и того же признака. В нормальной диплоидной клетке… … Естествознание. Энциклопедический словарь

АЛЛЕЛИ — (от греч. allēlōn — друг друга взаимно), аллеломорфы, две (или несколько) формы одного и того же гена. А. расположены в одинаковых участках гомологичных (парных) хромосом и определяют наследственные варианты развития одного и того же… … Ветеринарный энциклопедический словарь

Источник

Локусы, аллели, генетические маркеры что это?

В этой статье мы поможем разобраться вам во всех этих терминах, знание которых поможет понять механизм ДНК тест на установление родства, в том числе установление отцовства.

что такое аллели в генетике. 1406576787 madp984. что такое аллели в генетике фото. что такое аллели в генетике-1406576787 madp984. картинка что такое аллели в генетике. картинка 1406576787 madp984. Аллели (аллельные гены) — это различные формы одного и того же гена. Аллель — это одна из форм определенного гена. У разных генов может быть разное количество аллелей. Если аллелей гена существует больше двух, то говорят о множественном аллелизме.

Генетика человека. Главные понятия.

В каждом человеке есть уникальный набор генов, который достается нам от родителей.

При слиянии генов наших родителей внутри нас формируется совершенно уникальный и новый генетический код. Гены располагаются в хромосомах и имеют определенное место.

Так вот, благодаря научным исследованиям были определены участки, где находится конкретный ген, именно его и называют локусом или генетическим маркером.

Гены влияют на наш цвет волос, цвет глаз, цвет кожи и т.д. их многочисленные вариации называются аллелями. Нужно понимать, что ребенок получает по одной аллели каждого гена от отца и от матери.

Как правило аллели имеют противоположные свойства: темные и светлые волосы, высокий и низкий рост. Совокупность аллелей в исследуемых локусах и есть ДНК профиль человека.

Благодаря разнообразию эти аллелей в определенных участках (локусах) можно провести ДНК тест на установление родства. Т.к. ребенок получает половину генетического материала от матери и половину от отца.

Подробнее об аллелях и наследственности.

Т.к. аллели имеют противоположные свойства, один аллель, как правило, более сильный. И этот сильный аллель будет называться доминантным. Аллель, который не проявляется называется рецессивным. В целях отличия доминантных и рецессивных аллелей их обозначают разными буквами. Заглавную букву присваивают доминантному аллелю.

Как проходит тест ДНК

Получив образцы, генетическая лаборатория производит выделение ДНК из взятых мазков.

Далее проводится процедура полимеразной цепной реакции. Для этого достаточно иметь небольшой фрагмент ДНК.

После реакции ДНК-секвенатор проводит автономное тестирование и сравнение образцов. Итоговые данные вносятся сотрудником лаборатории в компьютерную программу, производится расчёт вероятности генетической связи и родства.

Программа сравнивает контрольный образец, предоставленный предполагаемым родственником, с испытуемым образцом.

Установление степени родства проводится по методу 25 STR, это минимальное количество генетических маркеров для точного определения родства.

Метод применяется в мировых лабораториях и обладает исключительно высокой достоверностью. Заключение и результаты тестирования подписываются руководителем лаборатории, заверяются печатью. Руководитель должен иметь действующий сертификат судмедэксперта.

Результат считается положительным, если вероятность совпадения выше 99,9999%.

Уникальность строения ДНК присуща каждому человеку, совпадения невозможны. Молекулы способны хранить полную информацию о наследственности. Именно за счёт этого в современной медицине достигается высокая достоверность тестирования.

Источник

Что такое аллельные гены: свойства, способы взаимодействия и множественный аллелизм.

Что такое аллельные гены?

Какие свойства есть у аллельных генов

Если рассмотреть генотип любого живого организма, то можно обнаружить, что он состоит из большого числа различных генов. Все вместе они образуют органическую совокупность и, являясь одним целым, выполняют общие функции.

Г. Менделем, которого считают основателем генетики, описана лишь одна возможность взаимодействия аллельных генов: когда одна полностью доминирует над другой. Аллель, которая подавляется, называют рецессивной.

Менделя считают отцом генетики как науки еще и потому, что он сформулировал все возможные закономерности наследования признаков. Сделал он это с помощью генетического метода, который и сегодня является наиболее перспективным. В основе метода лежит скрещивание организмов с определенными признаками и анализ проявлений этих признаков у потомства.

В этом месте нужно уточнить, что гены не всегда могут проявляться в виде признаков: при одинаковом генотипе у организмов могут быть фенотипические различия. Это объясняется тем, что на фенотип оказывает влияние то, как взаимодействуют генотип и окружающая среда.

Кроме того, фенотипическое проявление генов обусловлено не только одной парой генов: как минимум потому, что оно является результатом взаимодействия генотипической системы в целом.

Аллельное генотипическое взаимодействие — контакты белков и ферментов, а не генов.

Если принять и понять этот принцип, то можно избежать ошибок, проводя генетические исследования взаимодействия аллельных генов.

У методов Менделя есть определенные преимущества:

Чистая линия — это совокупность организмов, которые при длительном, на протяжении нескольких поколений, скрещивании друг с другом проявляют одинаковые признаки (расщепление отсутствует).

Ученый сформулировал 3 закона наследственности:

Эти законы позволяют описывать различные закономерности изменчивости и наследственности. Принципы, лежащие в основе этих законов, применяются в биологии и сегодня.

Способы взаимодействия аллельных генов

Согласно основам генетики, есть 2 варианта генотипического взаимодействия:

Исходя из этого, все живые организмы обладают парными аллельными генами. Внутри организма гены взаимодействуют 3 различными способами:

Кодоминирование

В случае такого взаимодействия аллельные гены проявляют свое действие независимо друг от друга.

Для варианта кодоминирования аллельных генов пример — это система групп крови ABO. Здесь гены A и B функционируют независимо.

Сверхдоминирование

В этой ситуации качество фенотипический проявлений доминантного гена увеличивается только тогда, когда он тесно связан с рецессивным.

В случае если в одной аллели находится два доминантных гена, то, как правило, их действие и проявление сильно хуже, чем в предыдущем варианте с одним доминантным и одним рецессивным геном.

Полное и неполное доминирование

При полном перекрытии доминантным геном рецессивного говорят о полном доминировании.

Неполное доминирование — вариант взаимодействия генов, когда рецессивный ген не подавляется полностью и может оказывать влияние (хотя бы минимальное) на фенотипическое проявление признака. В таком случае фенотипическое проявление признака является промежуточным — между родительскими формами.

Пример неполного доминирования — наследование окраски венчика цветка ночной красавицы. Здесь родительские формы имеют белый и красный цвета, а промежуточным будет розовый.

Множественный аллелизм

В генетике встречается такое явление как множественный аллелизм. В каждом организме есть два аллельных гена, при этом самих аллелей может быть больше двух. При таком раскладе только одна пара аллелей может проявлять фенотипические признаки: другие гены не задействуются. Гомологичные аллели, то есть одинаковые, «работают» над развитием одного и того же признака. При этом качество его проявления будет различаться.

При множественном аллелизме формы взаимодействия генов могут быть различными. Даже несмотря на то, что они отвечают за один и тот же признак. Дело в том, что проявляют они этот признак по-разному и при помощи различных способов (описанных выше).

Самый простой пример — окраска шерсти кролика. Здесь могут быть следующие варианты: белая, гималайская, шиншилловая, черная и коричневая. И это при том, что есть целая серия разных аллелей генов, ответственных за окрас. И таких примеров в биологии достаточно.

Несмотря на всю парадоксальность множественного аллелизма, в половую клетку живого существа проникает только одна пара гомологичных аллелей, и какая именно — вопрос случая. Так обеспечивается изменчивость каждого отдельного вида, играющая важнейшую роль в эволюции.

Благодаря изучению аллельных генов, становятся понятными закономерности наследования признаков. А еще это помогает исключить негативные последствия изменения наследственного набора организма.

Источник

Что такое аллели в генетике

Как наследуются заболевания и какими бывают мутации – сложные темы. Но без понимания, что такое аллель и где именно образуются поломки в генах не обойтись, если вы хотите анализировать результаты секвенирования. Эта теория тесно связана с практикой.

Что и как секвенируют?

ДНК для секвенирования выделяют из биологических материалов, которые мы отправляем в лабораторию. Это может быть щеточка с буккальным соскобом ребенка (эпителий с внутренней стороны щеки), кровь в пробирке или кровь, высушенная на фильтровальной бумаге (для удобства почтовой пересылки).

Если выделенной ДНК окажется достаточно и она пройдет контроль качества, то вам могут сообщить, что ваш образец принят. Далее он ждет своей очереди, чтобы с десятками других пройти секвенирование. Чем больше образцов обрабатывают одновременно и чем дольше продолжается секвенирование, тем дешевле его себестоимость.

Так что же конкретно читает секвенатор?

Представим, что наш генетический код (генотип) – это чертежи, записанные четырехбуквенным языком. По этим чертежам внутри клеток из аминокислот собираются белки. А с белками прямо или косвенно связаны все процессы в нашем организме.

Информация чертежей закодирована лишь четырьмя буквами A, T, G, C, точнее, молекулами из которых состоит ДНК. Но и четырех букв вполне достаточно.

Чтобы лучше понимать, что такое ДНК, рекомендую посмотреть это видео.

Технология секвенирования – это автоматическое чтение под микроскопом последовательности молекул A, T, G или C, помеченных так, чтобы они стали отличимыми друг от друга.

Сначала ДНК режется на множество отрезков. Их длина достаточна для того, чтобы не перепутать между собой. Затем каждый из этих отрезков копируется множество раз. Чтение происходит параллельно для многих копий отрезка сразу с двух сторон. Благодаря такому масштабированию и одновременности секвентатор может быстро прочитать геном или экзом. Многократное дублирование позволяет снизить вероятность ошибок.

Если вы хотите поглубже познакомиться с технологией секвенирования Illumina, рекомендую посмотреть это видео на английском языке.

После секвенирования компьютер находит место прочитанных отрезков относительно эталонного генома, то есть «выравнивает» фрагменты. Прочтения могут накладываются друг на друга, поэтому у каждой конкретной молекулы ДНК будет свое количество прочтений, которое называется «покрытие».

В этом определении нет устоявшегося термина и могут быть разные переводы с английского. Слова «покрытие», «глубина прочтения», «охват», «глубина секвенирования» могут означать одно и то же. Например, в следующих главах покрытие для конкретного нуклеотида будет обозначаться DP (DePth).

Среднее число прочитанных молекул участка (локуса), экзома или генома – называется «среднее покрытие».

Поскольку процесс чтения – случайный, всегда найдутся участки с настолько низким DP, что будут отброшены при контроле качества. Если речь идет о постановке диагноза, то таких «некачественных» прочтений, особенно в кодирующей части ДНК, должно быть немного и требования к среднему покрытию, соответственно, растут. Среднее покрытие экзома или генома определяет себестоимость и конечную цену секвенирования.

Как правило, если секвенируют целый геном, то приемлемым считают покрытие выше х20. Это означает, что каждый участок ДНК был в среднем прочитан не менее 20 раз. Экзом составляет около 2% от генома и ему можно уделить, по крайней мере, втрое больше внимания – здесь приемлемым будет покрытие x75 и более.

Дождавшись результатов секвенирования, вы получите флешку, внешний жесткий диск или email со ссылками на медицинский отчет и файлы с данными секвенирования. Оптимальным будет, если вы получите FASTQ файлы, BAM (или SAM) файл, VCF-файл и pdf-отчеты. Все их желательно сохранить у себя.

1) Исходный материал – это большой по размеру многотомный архив с FASTQ файлами, которые содержат, по сути, сырые и неупорядоченные данные секвенирования. Для экзома их размер будет составлять около 10GB. Эти файлы важны тем, что на их основе можно будет создавать новые отчеты со свежими уточнениями. Также по этим файлам можно достоверно оценивать качество секвенирования.

2) BAM-файл или SAM-файл с выровненными относительно эталонного генома данными. То есть, с уже упорядоченной информацией о ДНК, которую можно просматривать с помощью специальных ДНК-броузеров.

3) Самое интересное для клинического анализа – это выявление различий между геномом пациента и эталонным геномом человека (variant calling). Выявленные различия записывают в сравнительно небольшой VCF-файл. С помощью специальных программ его анализируют для выявления нарушений.

Аллели и наследственные менделевские заболевания

Считается, что ДНК двух людей идентичны на 99.9% и лишь 0.1% отличий определяет разницу между нами. Но самое интересное то, что различие ДНК существует и внутри наших клеток. По сути, в них содержится информация о двух разных людях, то есть две парных хромосомы. Благодаря этому, даже несмотря на множество мутаций у каждого из нас, мы обычно не заболеваем тяжелыми наследственными заболеваниями. Если на одной хромосоме есть дефектный ген, то вторая хромосома продолжает работать как надо. И обычно одного из двух «работников» бывает достаточно, чтобы произвести нужное количество «правильных» белков.

Чтобы лучше понять, как происходит наследование признаков, рекомендую познакомиться с этим видео.

Двое разных людей в наших генах – это, конечно же, мама и папа. После оплодотворения материнские и отцовские хромосомы соединяются и обмениваются различными участками. Перемешивание генов происходит не отдельными молекулами ДНК, а большими блоками, которые обмениваются как единое целое (их называют гаплотипами). В итоге почти все наши гены состоят из двух копий-половинок, унаследованных от обоих родителей (за исключением генов половых хромосом).

Кстати, иногда, варианты генов не наследуются. Под действием внешних факторов могут происходить мутации de novo, то есть вариант гена, которого не было ни у кого из родителей.

Аллели – это различные формы одного и того же гена, расположенные в одинаковой позиции (локусе) хромосомы. Если эти участки совпадают, их называют гомозиготными, если различаются, тогда их называют гетерозиготными.

Если аллели гомозиготные, то белки получаются одинаковые и эффект такого варианта на функцию гена одинаков – тут более-менее все понятно. Но при гетерозиготном варианте, один аллель может подавлять другой во внешних проявлениях. Такие отношения между аллелями называют доминантностью. Доминантный аллель будет проявляться в фенотипе – характеристике человека (цвет волос, непереносимость продукта и т.п.), а рецессивный никак не будет себя проявлять, оставляя играть роль доминантному.

Конечно, степени подавления могут быть разными, например, может быть и смешанный тип, когда свои особенности проявляют оба аллеля.

Вспомним школьный урок биологии про законы Грегора Менделя, рисунки с белыми и красными тюльпанами, а также варианты потомства, которое они дают при различных типах наследования. Следующие поколения тюльпанов при скрещивании могут оставаться красными и белыми, быть промежуточными по окрасу (розовыми) или даже с разными цветами отдельных лепестков.

Так и большинство генетических нарушений – моногенные и имеют понятные закономерности наследования в соответствии с законами Менделя. Поэтому они называются менделевскими заболеваниями.

Отсюда, два основных типа менделевских заболеваний. Оба могут быть предсказаны по законам генетики с определенной вероятностью, если известны варианты генов отца и матери.

Аутосомно-доминантное наследование, при котором болезнь может проявиться в случае, если у человека есть хотя бы один «дефектный» ген, унаследованный от отца или матери.

Если хотя бы у одного из родителей есть соответствующий генетический дефект, то не только у него развивается заболевание, но с вероятностью 50% это заболевание передастся ребенку. Выраженность заболевания будет зависеть от степени доминирования и степени повреждения гена, а она может меняться при передаче. Нарушения у родителя могут быть с очень «смазанными» симптомами (низкая пенетрантность) или проявиться уже в зрелом возрасте. Также аутосомно-доминантное наследование часто связано с мутациями de novo.

Аутосомно-рецессивное наследование, при котором болезнь проявляется только в том случае, если «дефектный» ген был унаследован от обоих родителей. То есть, обе парные хромосомы содержат мутацию на одном и том же участке.

Мы все носим множество редких «дефектных» генов. Но человек, имеющий только одну копию «дефектного» гена (а другую – «нормального» гена), при этом типе наследования является полностью или почти полностью здоровым. Он лишь носитель. Если же оказалось, что оба родителя ребенка являются носителями одной и той же болезни, то с вероятностью 25% ребенок унаследует генетический дефект от обоих родителей, а ни одной нормальной копии соответствующего гена у него не будет. В этом случае развивается заболевание.

Сцепленное с полом наследование связано с непарными половыми хромосомами. Правда непарные (XY) они только у мужчин, а у женщин они парные (XX), как и остальные хромосомы.

Некоторые заболевания передаются только от отца к сыну (когда «плохой» ген находится на мужской Y-хромосоме) или же от матери детям обоего пола (когда вызывающая болезнь мутация происходит на женской Х-хромосоме).

Этот тип заболеваний чаще всего проявляется у мужчин. Ведь, если «плохой» аллель находится на Y-хромосоме, то женщина, в принципе, не может его получить, так как обе половые хромосомы у женщин – это Х-хромосомы. Если болезнь связана с мутацией в женской половой хромосоме, то мужчина, получивший «плохую» хромосому, будет болен (так как у него в геноме нет «здоровой» пары).

У девочки-носителя действие мутантного аллеля обычно маскируется его здоровым напарником, и болезнь проявляется только в том случае, если обе ее Х-хромосомы несут мутацию.

Понятно, что редкое наследственное заболевание означает, что соответствующий аллель мало распространен. Частота аллеля (AF) – ключевой параметр, с которым мы будем работать. Она измеряется в процентах или как число от нуля до единицы. Частота аллеля определяется, как доля всех хромосом в популяции, которые несут эту аллель. Их расчетом занимается популяционная генетика.

Что может поломаться в гене?

Путь от гена до образования белка – это удивительно красивый процесс. Он состоит из двух основных этапов – транскрипции и трансляции, который происходит по цепочке: Ген –> РНК-полимераза –> мРНК (она же иРНК) –> рибосома –> белок.

Образование белка хорошо описано в этих видео [тут и тут].

Наши белки состоят из 20 аминокислот. Каждая аминокислота белка кодируется тремя идущими подряд буквами ДНК. Эта тройка называются триплетом (или кодоном). Подробнее о кодировании на английском можно почитать тут.

Большинство генетических вариаций – это точечные замены одной буквы ДНК на другую. Они называются однонуклеотидный полиморфизм – SNP или SNV (Single nucleotide polymorphism/variant). Но также распространены индели (indel) – это короткие вставки лишних молекул ДНК или наоборот выпадения тех нуклеотидов, которые должны быть (делеции).

Ошибки даже в одной из букв триплета могут привести ко вставке неправильной аминокислоты. А это, в свою очередь, может привести к неправильному образованию белка, когда его функция будет снижена или вообще утрачена.

Иногда SNP становятся причиной тяжелых генетических заболеваний (например, муковисцидоза). Но гораздо чаще точечные изменения безобидны, поэтому их и называют не мутациями, а вариантами.

Более 160 миллионов описанных в медицине и генетике вариантов хранятся в генетической энциклопедии полиморфизмов dbSNP, под уникальными номерами (RefSNP), которые начинаются с префикса rs.

Приведем пример очень распространенного SNP, который вы, возможно, найдете в своих результатах секвенирования:

Вариант под номером rs1801131 – это SNP в гене MTHFR. В нашем случае был вариант T>G (то есть, однонуклеотидная замена “T” на “G”) в хромосоме 1 в позиции 11,794,419 по референсоному геному GRCh38. Такая замена ДНК приведет к тому, что в белке вместо аминокислоты глутамин будет вставлена аминокислота аланин.

Белок МТНFR (метилентетрагидрофолатредуктаза) участвует в превращении гомоцистеина в метионин. При гетерозиготном варианте функция гена сохранена примерно на 65%, а при гомозиготном – примерно на 30%.

Согласно данным 1000 Genome, частота аллеля в мире составляет 24,94%. Это означает что вероятность быть носителем гомозиготного варианта составляет около 6%.

Под номером 3521 этот же вариант хранится в клинической базе данных Clinvar, где записаны те SNV, которые имеют медицинское значение. В разделе Conditions можно прочитать про ассоциированные заболевания.

Влияние варианта на функцию белка можно прогнозировать не только на основании клинических баз данных, но и на базе алгоритмов, которые учитывают, какой именно участок гена был изменен.

Но как так сразу можно узнать о серьезности мутации?

Участок ДНК гена состоит из нескольких фрагментов, которые неравнозначны по важности. Первый фрагмент указывает РНК-полимеразе на начало считывания, далее идет область экзонов вместе с интронами, завершающий фрагмент кода указывает на конец гена, то есть, служит командой для прекращения считывания. Повреждения в этих областях будут иметь совершенно различные последствия.

что такое аллели в генетике. structure. что такое аллели в генетике фото. что такое аллели в генетике-structure. картинка что такое аллели в генетике. картинка structure. Аллели (аллельные гены) — это различные формы одного и того же гена. Аллель — это одна из форм определенного гена. У разных генов может быть разное количество аллелей. Если аллелей гена существует больше двух, то говорят о множественном аллелизме.Схематическая структура гена

Как будет выглядеть такой анализ на практике?

Когда мы будем делать аннотирование VCF-файла, то инструмент snpEff добавит к каждому варианту множество подписей. Среди них будет столбец ANN[*].IMPACT (Impact prediction), в котором записано одно из четырех значений HIGH, MODERATE, LOW, MODIFIER. За редкими исключениями, с нарушением могут быть связаны варианты HIGH или MODERATE.

Чтобы оценить влияние конкретного варианта, программа ориентируется на таблицу соответствия. То есть, на записи соседнего столбца ANN[*].EFFECT. Сюда алгоритм записывает, какую именно часть или структуру гена затронул вариант.

Влияние
ANN[*].IMPACT
ОписаниеANN[*].EFFECT
HIGHПредполагается, что вариант оказывает сильное (разрушительное) воздействие на белок, вероятно вызывая укорочение белка, потерю функции или запуска нонсенс-опосредованного распада.chromosome_number_variation
exon_loss_variant
frameshift_variant
rare_amino_acid_variant
splice_acceptor_variant
splice_donor_variant
start_lost
stop_gained
stop_lost
transcript_ablation
MODERATEНеразрушающий вариант, который может изменить эффективность белка.3_prime_UTR_truncation
& exon_loss
5_prime_UTR_truncation
& exon_loss_variant
coding_sequence_variant
conservative_inframe_deletion
conservative_inframe_insertion
disruptive_inframe_deletion
disruptive_inframe_insertion
missense_variant
regulatory_region_ablation
splice_region_variant
TFBS_ablation
LOWПредполагается, что вариант в основном безвреден или вряд ли изменит поведение белка.5_prime_UTR_premature_start_codon_gain_variant
initiator_codon_variant
splice_region_variant
start_retained
stop_retained_variant
synonymous_variant
MODIFIERОбычно некодирующие варианты или варианты, влияющие на некодирующие гены, где предсказания затруднены или нет доказательств воздействия.3_prime_UTR_variant
5_prime_UTR_variant
coding_sequence_variant
conserved_intergenic_variant
conserved_intron_variant
downstream_gene_variant
exon_variant
feature_elongation
feature_truncation
gene_variant
intergenic_region
intragenic_variant
intron_variant
mature_miRNA_variant
miRNA
NMD_transcript_variant
non_coding_transcript_exon_variant
non_coding_transcript_variant
regulatory_region_amplification
regulatory_region_variant
TF_binding_site_variant
TFBS_amplification
transcript_amplification
transcript_variant
upstream_gene_variant

Повреждения очевидно будут сильными (HIGH), если они связаны с исчезновением целого экзона (exon_loss_variant), нарушению кратности считывания триплета ДНК (frameshift_variant), преждевременной остановке считывания (stop_gained) и прочими серьезными структурными проблемами.

Зато на этапе первичного анализа можно не обращать внимания на строки LOW и MODIFIER. В них, например, записаны SNP в некодирующей области (intron_variant), синонимичные варианты, которые несмотря на замену в ДНК приведут к кодированию одной и той же аминокислоты, а также другие малозначимые изменения.

Например, для описанного выше варианта rs1801131 может быть такая запись.

ANN[*].EFFECTANN[*].IMPACTANN[*].GENE
missense_variant, downstream_gene_variantMODERATE, MODIFIERMTHFR,C1orf167

Поскольку данный вариант затрагивает транскрипцию двух генов (MTHFR и C1orf167), то для них записаны два различных эффекта.

Для гена C1orf167 – это downstream, то есть вариант в некодирующей части ДНК, который не имеет значения (MODIFIER).

Для гена MTHFR – это missense, то есть вариант, который, хотя и не разрушает белок, но может привести к изменению его эффективности. Поэтому нужно выяснить его значимость (а пока считаем, что он умеренный – MODERATE).

Больше о патогенности варианта, мы узнаем из клинического опыта, то есть других баз данных (например, Clinvar, о которой речь пойдет ниже).

Содержание:

Часть 2. Немного теории: чтение ДНК, аллели, поломки генов
2.1. Что и как секвенируют?
2.2. Аллели и наследственные менделевские заболевания
2.3. Что может поломаться в гене?

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *